917 resultados para Recombinant Proteins -- immunology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative concentrations of the major histones, namely, H1, TH1, H2A, H2B, H3 and H4 are not significantly changed in the testes of the vitamin A-deficient rats, as compared to those in the normal controls. But the testis-specific protein, TP, which is synthesized at the mid-spermatid stage, is markedly reduced in the testes of the deficient rats. On supplementation of the deficient rats with retinyl acetate for 28 days, there was a 50% recovery in the relative concentration of the TP with respect to the total amounts of H1 and TH1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone H-1(alpha) and C-13' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to alpha-helical/beta-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rab8 and its interacting proteins as regulators of cell polarization During the development of a multi-cellular organism, progenitor cells have to divide and migrate appropriately as well as organize their differentiation with one another, in order to produce a viable embryo. To divide, differentiate and migrate cells have to undergo polarization, a process where internal and external components such as actin, microtubules and adhesion receptors are reorganized to produce a cell that is asymmetric, with functionally different surfaces. Also in the adult organism there is a continuous need for these processes, as cells need to migrate in response to tissue damage and to fight infection. Improper regulation of cell proliferation and migration can conversely lead to disease such as cancer. GTP-binding proteins function as molecular switches by cycling between a GTP-bound (active) conformation and a GDP-bound (inactive) conformation. The Ras super-family of small GTPases are found in all eukaryotic cells. They can be functionally divided into five subfamilies. The Ras family members mainly regulate gene expression, controlling cell proliferation and differentiation. Ras was in fact the first human oncogene to be characterized, and as much as 30% of all human tumors may be directly or indirectly caused by mutations of Ras molecules The Rho family members mainly regulate cytoskeletal reorganization. Arf proteins are known to regulate vesicle budding and Rab proteins regulate vesicular transport. Ran regulates nuclear transport as well as microtubule organization during mitosis. The focus of the thesis of Katarina Hattula, is on Rab8, a small GTPase of the Rab family. Activated Rab8 has previously been shown to induce the formation of new surface extensions, reorganizing both actin and microtubules, and to have a role in directed membrane transport to cell surfaces. However, the exact membrane route it regulates has remained elusive. In the thesis three novel interactors of Rab8 are presented. Rabin8 is a Rab8-specific GEF that localizes to vesicles where it presumably recruits and activates its target Rab8. Its expression in cells leads to remodelling of actin and the formation of polarized cell surface domains. Optineurin, known to be associated with a leading cause of blindness in humans (open-angle glaucoma), is shown to interact specifically with GTP-bound Rab8. Rab8 binds to an amino-terminal region and interestingly, the Huntingtin protein binds a carboxy-terminal region of optineurin. (Aberrant Huntingtin protein is known to be the cause Huntington s disease in humans.) Co-expression of Huntingtin and optineurin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures. Furthermore, optineurin promoted cell polarization in a similar way to Rab8. A third novel interactor of Rab8 presented in this thesis is JFC1, a member of the synaptogamin-like protein (Slp) family. JFC1 interacts with Rab8 specifically in its GTP-bound form, co-localizes with endogenous Rab8 on tubular and vesicular structures, and is probably involved in controlling Rab8 membrane dynamics. Rab8 is in this thesis work clearly shown to have a strong effect on cell shape. Blocking Rab8 activity by expression of Rab8 RNAi, or by expressing the dominant negative Rab8 (T22N) mutant leads to loss of cell polarity. Conversely, cells expressing the constitutively active Rab8 (Q67L) mutant exhibit a strongly polarized phenotype. Experiments in live cells show that Rab8 is associated with macropinosomes generated at ruffling areas of the membrane. These macropinosomes fuse with or transform into tubules that move toward the cell centre, from where they are recycled back to the leading edge to participate in protrusion formation. The biogenesis of these tubules is shown to be dependent on both actin and microtubule dynamics. The Rab8-specific membrane route studied contained several markers known to be internalized and recycled (1 integrin, transferrin, transferrin receptor, cholera toxin B subunit (CTxB), and major histocompatibility complex class I protein (MHCI)). Co-expression studies revealed that Rab8 localization overlaps with that of Rab11 and Arf6. Rab8 is furthermore clearly functionally linked to Arf6. The data presented in this thesis strongly suggests a role for Rab8 as a regulator for a recycling compartment, which is involved in providing structural and regulatory components to the leading edge to participate in protrusion formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcoholic liver disease (ALD) is a well recognized and growing health problem worldwide. ALD advances from fatty liver to inflammation, necrosis, fibrosis and cirrhosis. There is accumulating evidence that the innate immune system is involved in alcoholic liver injury. Within the innate and acquired immune systems, the complement system participates in inflammatory reactions and in the elimination of invading foreign, as well as endogenous apoptotic or injured cells. The present study aimed at evaluating the role of the complement system in the development of alcoholic liver injury. First, in order to study the effects of chronic ethanol intake on the complement system, the deposition of complement components in liver and the expression of liver genes associated with complement in animals with alcohol-induced liver injury were examined. It was demonstrated that chronic alcohol exposure leads to hepatic deposition of the complement components C1, C3, C8 and C9 in the livers of rats. Liver gene expression analysis showed that ethanol up-regulated the expression of transcripts for complement factors B, C1qA, C2, C3 and clusterin. In contrast, ethanol down-regulated the expression of the complement regulators factor H, C4bp and factor D and the terminal complement components C6, C8α and C9. Secondly, the role of the terminal complement pathway in the development of ALD was evaluated by using rats genetically deficient in the complement component C6 (C6-/-). It was found that chronic ethanol feeding induced more liver pathology (steatosis and inflammatory changes) in C6-/- rats than in wild type rats. The hepatic triacylglyceride content and plasma alanine aminotransferase activity increased in C6-/- rats, supporting the histopathological findings and elevation of the plasma pro-/anti-inflammatory TNF-/IL-10 ratio was also more marked in C6-/- rats. Third, the role of the alternative pathway in the development of alcoholic liver steatosis was characterized by using C3-/- mice. In C3-/- mice ethanol feeding tended to reduce steatosis and had no further effect on liver triacylglyceride, liver/body weight ratio nor on liver malondialdehyde level and serum alanine aminotransferase activity. In C3-/- mice alcohol-induced liver steatosis was reduced also after an acute alcohol challenge. In both wild type and C3-/- mice ethanol markedly reduced serum cholesterol and ApoA-I levels, phospholipid transfer protein activity and hepatic mRNA levels of fatty acid binding proteins and fatty acid -oxidation enzymes. In contrast, exclusively in C3-/- mice, ethanol treatment increased serum and liver adiponectin levels but down-regulated the expression of transcripts of lipogenic enzymes, adiponectin receptor 2 and adipose differentiation-related protein and up-regulated phospholipase D1. In conclusion, this study has demonstrated that the complement system is involved in the development of alcohol-induced liver injury. Chronic alcohol exposure causes local complement activation and induction of mRNA expression of classical and alternative pathway components in the liver. In contrast expression of the terminal pathway components and soluble regulators were decreased. A deficient terminal complement pathway predisposes to alcoholic liver damage and promotes a pro-inflammatory cytokine response. Complement component C3 contributes to the development of alcohol-induced fatty liver and its consequences by affecting regulatory and specific transcription factors of lipid homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular matrix (ECM) is a complex network of various proteins and proteoglycans which provides tissues with structural strength and resilience. By harvesting signaling molecules like growth factors ECM has the capacity to control cellular functions including proliferation, differentiation and cell survival. Latent transforming growth factor β (TGF-β) binding proteins (LTBPs) associate fibrillar structures of the ECM and mediate the efficient secretion and ECM deposition of latent TGF-β. The current work was conducted to determine the regulatory regions of LTBP-3 and -4 genes to gain insight into their tissue-specific expression which also has impact on TGF-β biology. Furthermore, the current research aimed at defining the ECM targeting of the N-terminal variants of LTBP-4 (LTBP-4S and -4L), which is required to understand their functions in tissues and to gain insight into conditions in which TGF-β is activated. To characterize the regulatory regions of LTBP-3 and -4 genes in silico and functional promoter analysis techniques were employed. It was found that the expression of LTBP-4S and -4L are under control of two independent promoters. This finding was in accordance with the observed expression patterns of LTBP-4S and -4L in human tissues. All promoter regions characterized in this study were TATAless, GC-rich and highly conserved between human and mouse species. Putative binding sites for Sp1 and GATA family of transcription factors were recognized in all of these regulatory regions. It is possible that these transcription factors control the basal expression of LTBP-3 and -4 genes. Smad binding element was found within the LTBP-3 and -4S promoter regions, but it was not present in LTBP-4L promoter. Although this element important for TGF-β signaling was present in LTBP-4S promoter, TGF-β did not induce its transcriptional activity. LTBP-3 promoter activity and mRNA expression instead were stimulated by TGF-β1 in osteosarcoma cells. It was found that the stimulatory effect of TGF-β was mediated by Smad and Erk MAPK signaling pathways. The current work explored the ECM targeting of LTBP-4S and identified binding partners of this protein. It was found that the N-terminal end of LTBP-4S possesses fibronectin (FN) binding sites which are critical for its ECM targeting. FN deficient fibroblasts incorporated LTBP-4S into their ECM only after addition of exogenous FN. Furthermore, LTBP-4S was found to have heparin binding regions, of which the C-terminal binding site mediated fibroblast adhesion. Soluble heparin prevented the ECM association of LTBP-4S in fibroblast cultures. In the current work it was observed that there are significant differences in the secretion, processing and ECM targeting of LTBP-4S and -4L. Interestingly, it was observed that most of the secreted LTBP-4L was associated with latent TGF-β1, whereas LTBP-4S was mainly secreted as a free form from CHO cells. This thesis provides information on transcriptional regulation of LTBP-3 and -4 genes, which is required for the deeper understanding of their tissue-specific functions. Further, the current work elucidates the structural variability of LTBPs, which appears to have impact on secretion and ECM targeting of TGF-β. These findings may advance understanding the abnormal activation of TGF-β which is associated with connective tissue disorders and cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rituximab, a monoclonal antibody against B-cell specific CD20 antigen, is used for the treatment of non-Hodgkin lymphomas (NHL) and chronic lymphatic leukemia. In combination with chemotherapeutics rituximab has remarkably improved the outcome of NHL patients, but a vast variation in the lengths of remissions remains and the outcome of individual patients is difficult to predict. This thesis has searched for an explanation for this by studying the effector mechanisms of rituximab and by comparing gene expression in lymphoma tissue samples of patients with long- and short-term survival. This work demonstrated that activation of complement (C) system is in vitro more efficient effector mechanism of rituximab than cellular mechanisms or apoptosis. Activation of the C system was also shown in vivo during rituximab treatment. However, intravenously administered rituximab could not enter the cerebrospinal fluid, and neither C activation nor removal of lymphoma cells was observed in central nervous system. In vitro cytotoxicity assays showed that rituximab-induced cell killing could be markedly improved with simultaneous neutralization of the C regulatory proteins CD46 (Membrane cofactor protein), CD55 (Decay-accelerating factor), and CD59 (protectin). In a retrospective study of follicular lymphoma (FL) patients, low lymphoma tissue mRNA expressions of CD59 and CD55 were associated with a good prognosis and in a progressive flow cytometry study high expression of CD20 relative to CD55 was correlated to a longer progression free survival. Gene expression profile analysis revealed that expression of certain often cell cycle, signal transduction or immune response related genes correlate with clinical outcome of FL patients. Emphasizing the role of tumor microenvironment the best differentiating genes Smad1 and EphA1 were demonstrated to be mainly expressed in the non-malignant cells of tumors. In conclusion, this thesis shows that activation of the C system is a clinically important effector mechanism of rituximab and that microenvironment factor in tumors and expression of C regulatory proteins affect markedly the efficacy of immunochemotherapy. This data can be used to identify more accurately the patients for whom immunochemotherapy is given. It may also be beneficial in development of rituximab-containing and other monoclonal antibody therapies against cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrapeptide sequences of the type Z-Pro-Y-X were obtained from the crystal structure data on 34 globular proteins, and used in an analysis of the positional preferences of the individual amino acid residues in the β-turn conformation. The effect of fixing proline as the second position residue in the tetrapeptide sequence was studied by comparing the data obtained on the positional preferences with the corresponding data obtained by Chou and Fasman using the Z-R-Y-X sequence, where no particular residue was fixed in any of the four positions. While, in general, several amino acid residues having relatively very high or very low preferences for specific positions were found to be common to both the Z-Pro-Y-X and Z-R-Y-X sequences, many significant differences were found between the two sets of data, which are to be attributed to specific interactions arising from the presence of the proline residue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical potential energy calculations have been carried out to determine the preferred conformations of some oligosaccharides having the trimannosidic core structure (Man3GlcNAc2) and which interact with concanavalin A. In the minimum energy conformations for the trimannosidic core the mannose residue on the Man α(1–6) arm comes close to one of the N-acetylglucosamine residues of the core. The addition of N-acetylglucosamine residues to the terminal mannose residues does not alter the preferred conformation of the trimannosidic core although it alters the relative preference of some of the higher energy conformations. The minimum energy conformation broadly agrees with available X-ray data. The presence of a bisecting N-acetylglucosamine residue on the middle mannose does not push the trimannosidic core to any new conformation but it does alter the relative preference for a particular conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectobacterium atrosepticum on Gram-negatiivinen bakteeri, joka aiheuttaa perunan tyvi- ja märkämätää. P. atrosepticum bakteerin optimilämpötila on melko alhainen ja se on yleinen lauhkeilla alueilla. Tyvimätä leviää pääasiassa siemenperunan välityksellä ja siksi se on ongelma erityisesti siemenperunan tuotannossa. P. atrosepticum kannan SCRI1043 genomi on julkaistu ja sitä tutkitaan malliorganismina märkä- ja tyvimädän taudinaiheuttamisen ymmärtämiseksi. Tämä opportunistinen taudinaiheuttaja voi elää isäntäkasvissa kuukausia piilevänä, aiheuttamatta näkyviä oireita. Suotuisissa olosuhteissa bakteerit alkavat jakautua ja tuottaa kasvin kudoksia hajottavia entsyymejä. Mädäntyvä kasvimassa tarjoaa ravinteita bakteerien kasvuun ja mahdollistaa isäntäkasvin asuttamisen. Soluseiniä hajottavien entsyymien merkitys taudinaiheuttamisessa on hyvin tunnettu, mutta oireettomasta jaksosta ja taudin alkuvaiheista tiedätään vain vähän. Bakteerin genomi sisältää monia toksiineja, adhesiineja, hemolysiineja ja muita proteiineja, joilla saattaa olla merkitys taudinaiheuttamisessa. Tässä työssä käytettiin proteomiikkaa ja mikrosiruanalysiä P. atrosepticum bakteerin erittyvien proteiinien ja geeniekspression tutkimiseen. Proteiinit, jotka eritetään ulos bakteerista, toimivat todennäköisesti taudinaiheuttamisessa, koska ne ovat suorassa kontaktissa isäntäkasvin kanssa. Analyysit suoritettiin olosuhteissa, jotka muistuttavat kasvin soluvälitilaa: matala pH, vähän ravinteita ja matala lämpötila. Isäntäkasvin läsnäolon vaikutusta proteiinien tuottoon ja geeniekspressioon tutkittiin lisäämällä perunauutetta kasvatusalustaan. Tutkimuksessa tunnistettiin P. atrosepticum bakteerin monia jo tunnettuja ja mahdollisesti taudinaiheuttamiseen liittyviä proteiineja. Perunauute lisäsi hiljattain tunnistetun, proteiinien eritysreittiä (tyyppi VI sekreetio, T6SS) koodaavien geenien ilmentymistä. Lisäksi bakteerin havaittiin erittävän useita T6SS:n liittyviä proteiineja kasvualustaan, johon oli lisätty perunauutetta. T6SS:n merkitys bakteereille on vielä epäselvä ja sen vaikutuksesta taudinaiheuttamiseen on julkaistu ristiriitaisia tuloksia. Märkä- ja tyvimädän ymmärtäminen molekulaarisella tasolla luo pohjan tautien kontrollointiin tähtäävään soveltavaan tutkimukseen. Tämä tutkimus lisää tietoa kasvi-patogeeni- interaktiosta ja sitä voidaan tulevaisuudessa käyttää hyväksi esimerkiksi diagnostiikassa, resistenttien perunalajikkeiden jalostuksessa tai viljely- ja varastointiolosuhteiden parantamisessa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No commercial immunodiagnostic tests for human scabies are currently available, and existing animal tests are not sufficiently sensitive. The recombinant Sarcoptes scabiei apolipoprotein antigen Sar s 14.3 is a promising immunodiagnostic, eliciting high levels of IgE and IgG in infected people. Limited data are available regarding the temporal development of antibodies to Sar s 14.3, an issue of relevance in terms of immunodiagnosis. We utilised a porcine model to prospectively compare specific antibody responses to a primary infestation by ELISA, to Sar s 14.3 and to S. scabiei whole mite antigen extract (WMA). Differences in the antibody profile between antigens were apparent, with Sar s 14.3 responses detected earlier, and declining significantly after peak infestation compared to WMA. Both antigens resulted in >90% diagnostic sensitivity from weeks 8–16 post infestation. These data provide important information on the temporal development of humoral immune responses in scabies and further supports the development of recombinant antigen based immunodiagnostic tests for recent scabies infestations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impatiens necrotic spot tospovirus (INSV) is a significant pathogen of ornamentals. The tripartite negative- and ambi-sense RNA genome encodes six proteins that are involved in cytoplasmic replication, movement, assembly, insect transmission and defence. To gain insight into the associations of these viral proteins, we determined their intracellular localization and interactions in living plant cells. Nucleotide sequences encoding the nucleoprotein N, non-structural proteins NSs and NSm, and glycoproteins Gn and Gc of a Kentucky isolate of INSV were amplified by RTPCR, cloned, sequenced and transiently expressed as fusions with autofluorescent proteins in leaf epidermal cells of Nicotiana benthamiana. All proteins accumulated at the cell periphery and co-localized with an endoplasmic reticulum marker. The Gc protein fusion also localized to the nucleus. N and NSm protein self-interactions and an NSm-N interaction were observed by using bimolecular fluorescence complementation. A tospovirus NSm homotypic interaction had not been reported previously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circular dichroism bands of (+) gossypol in the spectral region 300–400 nm have been shown to be sensitive to interactions with proteins. Using CD spectroscopy, gossypol has been shown to interact with lactate dehydrogenase, malate dehydrogenase, alkaline phosphatase, lysozyme, protamine and poly-L-lysine. Binding to proteins generally results in a pronounced red shift of the long wavelength CD band (not, vert, similar 380–430 nm) accompanied by a reduction in ellipticity. The changes in spectral parameters of the 1Lb binaphthyl transtion may reflect a distortion from a nearly perpendicular gossypol conformation, on binding to proteins.