922 resultados para Random Walks
Resumo:
* Research supported by NATO GRANT CRG 900 798 and by Humboldt Award for U.S. Scientists.
Resumo:
As shown recently, a long telecommunication fibre may be treated as a natural one-dimensional random system, where lasing is possible due to a combination of random distributed feedback via Rayleigh scattering by natural refractive index inhomogeneities and distributed amplification through the Raman effect. Here we present a new type of a random fibre laser with a narrow (∼1 nm) spectrum tunable over a broad wavelength range (1535-1570 nm) with a uniquely flat (∼0.1 dB) and high (>2 W) output power and prominent (>40 %) differential efficiency, which outperforms traditional fibre lasers of the same category, e.g. a conventional Raman laser with a linear cavity formed in the same fibre by adding point reflectors. Analytical model is proposed that explains quantitatively the higher efficiency and the flatter tuning curve of the random fiber laser compared to conventional one. The other important features of the random fibre laser like "modeless" spectrum of specific shape and corresponding intensity fluctuations as well as the techniques of controlling its output characteristics are discussed. Outstanding characteristics defined by new underlying physics and the simplicity of the scheme implemented in standard telecom fibre make the demonstrated tunable random fibre laser a very attractive light source both for fundamental science and practical applications such as optical communication, sensing and secure transmission. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
We have measured the longitudinal power distribution inside a random distributed feedback Raman fiber laser. The observed distribution has a sharp maximum whose position depends on pump power. The spatial distribution profiles are different for the first and the second Stokes waves. Both analytic solution and results of direct numerical modeling are in excellent agreement with experimental observations. © 2012 Optical Society of America.
Resumo:
The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. © 2012 Kvantovaya Elektronika and Turpion Ltd.
Resumo:
A range of physical and engineering systems exhibit an irregular complex dynamics featuring alternation of quiet and burst time intervals called the intermittency. The intermittent dynamics most popular in laser science is the on-off intermittency [1]. The on-off intermittency can be understood as a conversion of the noise in a system close to an instability threshold into effective time-dependent fluctuations which result in the alternation of stable and unstable periods. The on-off intermittency has been recently demonstrated in semiconductor, Erbium doped and Raman lasers [2-5]. Recently demonstrated random distributed feedback (random DFB) fiber laser has an irregular dynamics near the generation threshold [6,7]. Here we show the intermittency in the cascaded random DFB fiber laser. We study intensity fluctuations in a random DFB fiber laser based on nitrogen doped fiber. The laser generates first and second Stokes components 1120 nm and 1180 nm respectively under an appropriate pumping. We study the intermittency in the radiation of the second Stokes wave. The typical time trace near the generation threshold of the second Stokes wave (Pth) is shown at Fig. 1a. From the number of long enough time-traces we calculate statistical distribution between major spikes in time dynamics, Fig. 1b. To eliminate contribution of high frequency components of spikes we use a low pass filter along with the reference value of the output power. Experimental data is fitted by power law,
On Multi-Dimensional Random Walk Models Approximating Symmetric Space-Fractional Diffusion Processes
Resumo:
Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.
Resumo:
A localized method to distribute paths on random graphs is devised, aimed at finding the shortest paths between given source/destination pairs while avoiding path overlaps at nodes. We propose a method based on message-passing techniques to process global information and distribute paths optimally. Statistical properties such as scaling with system size and number of paths, average path-length and the transition to the frustrated regime are analyzed. The performance of the suggested algorithm is evaluated through a comparison against a greedy algorithm. © 2014 IOP Publishing Ltd and SISSA Medialab srl.
Resumo:
We examined the possibility of using noise or pseudo-random variations of the refractive index in the design of fiber Bragg gratings (FBGs). We demonstrated theoretically and experimentally that top-hat FBGs may be designed and fabricated using this approach. The reflectivity of the fabricated top-hat FBG matches quite well with that of the designed one. © 2015 Optical Society of America.
Resumo:
The emerging science and applications of ultra-long random fibre lasers will be overviewed. The lasers with cavity length up to several hundred km exploit random distributed feedback provided by Rayleigh scattering amplified through Raman effect. © 2014 OSA.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
2000 Mathematics Subject Classification: 60J60, 62M99.
Resumo:
Unrepeatered 100 Gbit/s per channel wave-divisionmultiplexed dual-polarization-QPSK transmission with random distributed feedback fiber laser-based Raman amplification using fiber Bragg grating is demonstrated. Transmission of 1.4 Tb/s (14 × 100 Gbit/s) was possible in 352.8 km link and 2.2 Tb/s (22 × 100 Gbit/s) was achieved in 327.6 km without employing remote optically pumped amplifier or speciality fibers.
Resumo:
Румен Руменов Данговски, Калина Христова Петрова - Разглеждаме броя на несамопресичащите се разходки с фиксирана дължина върху целочислената решетка. Завършваме анализа върху случая за лента, с дължина едно. Чрез комбинаторни аргументи получаваме точна формула за броя на разходките върху лента, ограничена отляво и отдясно. Формулата я изследваме и асимптотично.
Resumo:
In this paper, we propose a new edge-based matching kernel for graphs by using discrete-time quantum walks. To this end, we commence by transforming a graph into a directed line graph. The reasons of using the line graph structure are twofold. First, for a graph, its directed line graph is a dual representation and each vertex of the line graph represents a corresponding edge in the original graph. Second, we show that the discrete-time quantum walk can be seen as a walk on the line graph and the state space of the walk is the vertex set of the line graph, i.e., the state space of the walk is the edges of the original graph. As a result, the directed line graph provides an elegant way of developing new edge-based matching kernel based on discrete-time quantum walks. For a pair of graphs, we compute the h-layer depth-based representation for each vertex of their directed line graphs by computing entropic signatures (computed from discrete-time quantum walks on the line graphs) on the family of K-layer expansion subgraphs rooted at the vertex, i.e., we compute the depth-based representations for edges of the original graphs through their directed line graphs. Based on the new representations, we define an edge-based matching method for the pair of graphs by aligning the h-layer depth-based representations computed through the directed line graphs. The new edge-based matching kernel is thus computed by counting the number of matched vertices identified by the matching method on the directed line graphs. Experiments on standard graph datasets demonstrate the effectiveness of our new kernel.
Resumo:
In this paper we propose a quantum algorithm to measure the similarity between a pair of unattributed graphs. We design an experiment where the two graphs are merged by establishing a complete set of connections between their nodes and the resulting structure is probed through the evolution of continuous-time quantum walks. In order to analyze the behavior of the walks without causing wave function collapse, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the divergence between the evolution of two suitably initialized quantum walks over this structure is maximum when the original pair of graphs is isomorphic. We also prove that under special conditions the divergence is minimum when the sets of eigenvalues of the Hamiltonians associated with the two original graphs have an empty intersection.