842 resultados para REPRODUCING KERNEL HILBERT SPACES
Resumo:
This article is a continuation of our previous work [5], where we formulated general existence theorems for pullback exponential attractors for asymptotically compact evolution processes in Banach spaces and discussed its implications in the autonomous case. We now study properties of the attractors and use our theoretical results to prove the existence of pullback exponential attractors in two examples, where previous results do not apply.
Resumo:
We present a new approach to perform calculations with the certain standard classes in cohomology of the moduli spaces of curves. It is based on an important lemma of Ionel relating the intersection theoriy of the moduli space of curves and that of the space of admissible coverings. As particular results, we obtain expressions of Hurwitz numbers in terms of the intersections in the tautological ring, expressions of the simplest intersection numbers in terms of Hurwitz numbers, an algorithm of calculation of certain correlators which are the subject of the Witten conjecture, an improved algorithm for intersections related to the Boussinesq hierarchy, expressions for the Hodge integrals over two-pointed ramification cycles, cut-and-join type equations for a large class of intersection numbers, etc.
Resumo:
[EN] The purpose of this paper is to present some fixed point theorems for Meir-Keeler contractions in a complete metric space endowed with a partial order. MSC: 47H10.
Resumo:
[EN] The purpose of this paper is to present a fixed point theorem for generalized contractions in partially ordered complete metric spaces. We also present an application to first-order ordinary differential equations.
Resumo:
The main object of this thesis is the analysis and the quantization of spinning particle models which employ extended ”one dimensional supergravity” on the worldline, and their relation to the theory of higher spin fields (HS). In the first part of this work we have described the classical theory of massless spinning particles with an SO(N) extended supergravity multiplet on the worldline, in flat and more generally in maximally symmetric backgrounds. These (non)linear sigma models describe, upon quantization, the dynamics of particles with spin N/2. Then we have analyzed carefully the quantization of spinning particles with SO(N) extended supergravity on the worldline, for every N and in every dimension D. The physical sector of the Hilbert space reveals an interesting geometrical structure: the generalized higher spin curvature (HSC). We have shown, in particular, that these models of spinning particles describe a subclass of HS fields whose equations of motions are conformally invariant at the free level; in D = 4 this subclass describes all massless representations of the Poincar´e group. In the third part of this work we have considered the one-loop quantization of SO(N) spinning particle models by studying the corresponding partition function on the circle. After the gauge fixing of the supergravity multiplet, the partition function reduces to an integral over the corresponding moduli space which have been computed by using orthogonal polynomial techniques. Finally we have extend our canonical analysis, described previously for flat space, to maximally symmetric target spaces (i.e. (A)dS background). The quantization of these models produce (A)dS HSC as the physical states of the Hilbert space; we have used an iterative procedure and Pochhammer functions to solve the differential Bianchi identity in maximally symmetric spaces. Motivated by the correspondence between SO(N) spinning particle models and HS gauge theory, and by the notorious difficulty one finds in constructing an interacting theory for fields with spin greater than two, we have used these one dimensional supergravity models to study and extract informations on HS. In the last part of this work we have constructed spinning particle models with sp(2) R symmetry, coupled to Hyper K¨ahler and Quaternionic-K¨ahler (QK) backgrounds.
Resumo:
[ES]Recientemente, en la Teoría del punto fijo, han aparecido muchos resultados que obtienen condiciones suficientes para la existencia de un punto fijo si trabajamos con aplicaciones en un conjunto dotado de un orden parcial. Generalmente, estos resultados combinan dos teoremas del punto fijo fundamentales: el Teorema de la contracción de Banach y el Teorema de Knaster-Tarski.
Resumo:
[EN]We present a new strategy for constructing tensor product spline spaces over quadtree and octree T-meshes. The proposed technique includes some simple rules for inferring local knot vectors to define spline blending functions. These rules allow to obtain for a given T-mesh a set of cubic spline functions that span a space with nice properties: it can reproduce cubic polynomials, the functions are C2-continuous, linearly independent, and spaces spanned by nested T-meshes are also nested. In order to span spaces with these properties applying the proposed rules, the T-mesh should fulfill the only requirement of being a 0-balanced quadtree or octree. ..
Resumo:
[EN]We present a new strategy for constructing spline spaces over hierarchical T-meshes with quad- and octree subdivision scheme. The proposed technique includes some simple rules for inferring local knot vectors to define C 2 -continuous cubic tensor product spline blending functions. Our conjecture is that these rules allow to obtain, for a given T-mesh, a set of linearly independent spline functions with the property that spaces spanned by nested T-meshes are also nested, and therefore, the functions can reproduce cubic polynomials. In order to span spaces with these properties applying the proposed rules, the T-mesh should fulfill the only requirement of being a 0- balanced mesh...
Resumo:
[EN]We present a new strategy for constructing tensor product spline spaces over quadtree and octree T-meshes. The proposed technique includes some simple rules for inferring local knot vectors to define spline blending functions. These rules allow to obtain for a given T-mesh a set of cubic spline functions that span a space with nice properties: it can reproduce cubic polynomials, the functions are C2-continuous, linearly independent, and spaces spanned by nested T-meshes are also nested. In order to span spaces with these properties applying the proposed rules, the T-mesh should fulfill the only requirement of being a 0-balanced quadtree or octree. ..
Resumo:
Machine learning comprises a series of techniques for automatic extraction of meaningful information from large collections of noisy data. In many real world applications, data is naturally represented in structured form. Since traditional methods in machine learning deal with vectorial information, they require an a priori form of preprocessing. Among all the learning techniques for dealing with structured data, kernel methods are recognized to have a strong theoretical background and to be effective approaches. They do not require an explicit vectorial representation of the data in terms of features, but rely on a measure of similarity between any pair of objects of a domain, the kernel function. Designing fast and good kernel functions is a challenging problem. In the case of tree structured data two issues become relevant: kernel for trees should not be sparse and should be fast to compute. The sparsity problem arises when, given a dataset and a kernel function, most structures of the dataset are completely dissimilar to one another. In those cases the classifier has too few information for making correct predictions on unseen data. In fact, it tends to produce a discriminating function behaving as the nearest neighbour rule. Sparsity is likely to arise for some standard tree kernel functions, such as the subtree and subset tree kernel, when they are applied to datasets with node labels belonging to a large domain. A second drawback of using tree kernels is the time complexity required both in learning and classification phases. Such a complexity can sometimes prevents the kernel application in scenarios involving large amount of data. This thesis proposes three contributions for resolving the above issues of kernel for trees. A first contribution aims at creating kernel functions which adapt to the statistical properties of the dataset, thus reducing its sparsity with respect to traditional tree kernel functions. Specifically, we propose to encode the input trees by an algorithm able to project the data onto a lower dimensional space with the property that similar structures are mapped similarly. By building kernel functions on the lower dimensional representation, we are able to perform inexact matchings between different inputs in the original space. A second contribution is the proposal of a novel kernel function based on the convolution kernel framework. Convolution kernel measures the similarity of two objects in terms of the similarities of their subparts. Most convolution kernels are based on counting the number of shared substructures, partially discarding information about their position in the original structure. The kernel function we propose is, instead, especially focused on this aspect. A third contribution is devoted at reducing the computational burden related to the calculation of a kernel function between a tree and a forest of trees, which is a typical operation in the classification phase and, for some algorithms, also in the learning phase. We propose a general methodology applicable to convolution kernels. Moreover, we show an instantiation of our technique when kernels such as the subtree and subset tree kernels are employed. In those cases, Direct Acyclic Graphs can be used to compactly represent shared substructures in different trees, thus reducing the computational burden and storage requirements.
Resumo:
MoNET e' un emulatore per reti wireless mobili, composto da una suite di software distribuiti. MoNET fornisce a ricercatori e sviluppatori un ambiente virtualizzato controllato per lo sviluppo e il test di applicazioni mobili e protocolli di rete per qualsiasi tipologia di hardware e piattaforma software che possa essere virtualizzata. La natura distribuita di questo emulatore permette di creare scenari di dimensione arbitraria. La rete wireless viene emulata in maniera trasparente, quindi la connettività percepita da ogni nodo virtuale, presenta le stesse caratteristiche di quella fisica emulata.