1000 resultados para Quadrupolar interactions
Resumo:
The human telomeric DNA can form four-stranded structures: the G-rich strand adopts a G-quadruplex conformation stabilized by G-quartets and the C-rich strand may fold into an I-motif based on intercalated C (.) C+ base pairs. There is intense interests in the design and synthesis of compounds which can target telomeric DNA and inhibit the telomerase activity. Here we report the thermodynamic studies of the two newly synthesized terbium-amino acid complexes bound to the human telomeric G-quadruplex and I-motif DNA which were studied by means of UV-Visible, DNA meltings, fluorescence and circular dichroism. These two complexes can bind to the human telomeric DNA and have shown different features on DNA stability, binding stoichiometry, and sequence-dependent fluorescence enhancement. To our knowledge, this is the first report to show terbium-amino acid complexes can interact with the human telomeric DNA.
Resumo:
Mercaptoethane sulfonate protected, water-soluble gold and silver nanoparticles (Au-MES and Ag-MES) are synthesized by one-phase method and characterized by TEM, TGA and XPS techniques, UV-vis and FTIR spectra. Both Au-MES and Ag-MES nanoparticles are soluble in the water up to 2.0 mg/ml and the stability of AU-MES is much better than that of Ag-MES. When dissolved in the water. they behave like a polyanion and can be used to build multilayer films with polyaniline (PANI) by way of layer-by-layer. A new approach is presented to fabricate the Multilayer films of Au-MES/PANI and Ag-MES/PAN]. The assembly mechanism of these multilayer films is also discussed. We anticipate highly conducting PANI films can be obtained by doping with these nanoparticles.
Resumo:
The effects of the chain structure and the intramolecular interaction energy of an A/B copolymer on the miscibility of the binary blends of the copolymer and homopolymer C have been studied by means of a Monte Carlo simulation. In the system, the interactions between segments A, B and C are more repulsive than those between themselves. In order to study the effect of the chain structure of the A/B copolymer on the miscibility, the alternating, random and block copolymers were introduced in the simulations, respectively. The simulation results show that the miscibility of the binary blends strongly depends on the intramolecular interaction energy ((ε) over bar (AB)) between segments A and B within the A/B copolymers. The higher the repulsive interaction energy, the more miscible the A/B copolymer and homopolymer C are. For the diblock copolymer/homopolymer blends, they tend to form micro phase domains. However, the phase domains become so small that the blend can be considered as a homogeneous phase for the alternating copolymer/ homopolymer blends. Furthermore, the investigation of the average end-to-end distance ((h) over bar) in different systems indicates that the copolymer chains tend to coil with the decrease Of (ε) over bar (AB) whereas the (h) over bar of the homopolymer chains depends on the chain structure of the copolymers.
Resumo:
The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by a Monte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, whereas it was attractive between segment B and segment C. In order to study the effect of copolymer chain structure on the morphology and structure of A-B copolymer/C homopolymer blends, the alternating, random and block A-B copolymers were introduced into the blends, respectively. The simulation results indicated that the miscibility of A-B block copolymer/C homopolymer blends depended on the chain structure of the A-B copolymer. Compared with alternating or random copolymer, the block copolymer, especially the diblock copolymer, could lead to a poor miscibility of A-B copolymer/C homopolymer blends. Moreover, for diblock A-B copolymer/C homopolymer blends, obvious self-organized core-shell structure was observed in the segment B composition region from 20% to 60%. However, if diblock copolymer composition in the blends is less than 40%, obvious self-organized core-shell structure could be formed in the B-segment component region from 10 to 90%. Furthermore, computer statistical analysis for the simulation results showed that the core sizes tended to increase continuously and their distribution became wider with decreasing B-segment component.
Resumo:
The miscibility and hydrogen-bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p-vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The single glass-transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen-bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen-bonding interactions between the oxygen atoms of carbon-oxygen single bonds and carbon-oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C-1s peaks and the evolution of three novel O-1s peaks in the blends, which supports the suggestion from FTIR analyses.
Resumo:
Circular dichoism and UV-vis measurements were used to study the interaction between porphyrin and monoclonal antibodies ( McAbs). McAbs-porphyrin complex formation is usually accompanied by significant bathochromic shift and hyperchromicity changes of the absorption maxima in the porphyrin soret band region. Induced CD spectra in the same region (350 similar to 450 nm) were detected upon complex formation. They follow Lamb-Beer's law and exhibit isosbestic behavior. Both the UV-Vis and induced CD spectra of the antibody: porphyrin complex remain unchanged over a broad pH range ( pH 6 similar to 11), indicating remarkable stability of the complex and reflecting the dominant role of hydrophobic interaction between the hapten benzophenone and the antibody combining site.
Resumo:
An investigation into the interactions between thiamine monophosphate (TMP) and anions has resulted in the preparation and X-ray characterization of the compounds (TMP)(Hg2Br5).0.5H(2)O (1) and (TMP)(2)(Hg3I8) (2). In each compound the TMP molecule exists as a monovalent cation in the usual F conformation. The halogenomercurate anions occur in two-dimensional (2-D) network in 1 or one-dimensional (1-D) chain in 2. In both 1 and 2, the structures consist of alternating cationic sheets of the hydrogen-bonded TMP molecules and anionic sheets of the polymeric halogenomercurate anions. The TMP molecule binds to the polymeric anions through the characteristic 'anion bridge I', C(2)-H..X...pyrimidinium (X = Br in 1 and 1 in 2), and electrostatic interactions between electropositive S(1) and halogen atoms. The 'anion bridge II' of the type N(4'1)-H...X...thiazolium (X = phosphate group) plays a role in stabilizing the molecular conformation. The biological implication of the host-guest-like complexation between TMP and polymeric anions is discussed.
Resumo:
Thin films of an organo-soluble polyimide based on 1,4-(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) and 2,2'-dimethyl-4,4'-methylene dianiline (DMMDA) have been studied. A prism coupler was used to measure the refractive indices. The average refractive indices of thin films prepared by annealing at different temperatures and times were chosen to characterize the condensation states of thin films. Thin films annealed at 200 degrees C show irreversible changes in physical properties, eg solubility. FTIR spectroscopy showed that the chain structures of the above thin films remained unchanged. It is proposed that specific molecular interactions induce the irreversible changes revealed by fluorescence spectroscopy. (C) 2000 Society of Chemical Industry.
Resumo:
Full Paper: The phase, behavior of A-B-random copolymer/C-homopolymer, blends with special interaction was studied by a. Monte, Carlo simulation in two dimensions. The interaction between I segment A and segment C was repulsive, whereas it was attractive between segment B and segment C. The simulation results showed that the blend became two large co-continuous phase domains at lower segment-B component compositions, indicating that the blend showed spinodal decomposition. With an increase of the segment-B component, the miscibility between the copolymer,and the polymer was gradually improved up to being miscible. In addition, it was found that segment B tended to move to the surface of the copolymer phase in the case of a lower component of segment B. On the other hand, if was observed that the average, end-to-end distances ((h) over bar) for both copolymer and polymer changed slowly with increasing segment-B component of the copolymer up to 40%, thereafter they increased considerably with increasing segment B component. Moreover, it was found that the (h) over bar of the copolymer was obviously shorter than that of the homopolymer for the segment-B composition, region from 0% to 80%. Finally, a, phase diagram showing I phase and - II phase regions under the condition of constant-temperature is presented.
Resumo:
Combination of affinity extraction procedures with mass spectrometric analyses is termed affinity-directed mass spectrometry, a technique that has gained broad interest in immunology and is extended here with several improvements from methods used in previous studies. A monoclonal antibody was immobilized on a nitrocellulose (NC) membrane, allowing the corresponding antigen to be selectively captured from a complex solution for analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). This method was also used to rapidly determine the approximate binding region responsible for the antibody/antigen interaction. The tryptic fragments of antigen protein in buffer were applied to the antibody immobilized on NC film and allowed to interact. The NC film was then washed to remove salts and other unbound components, and subjected to analysis by MALDI-TOFMS. Using interferon-alpha (2a) and anti-interferon-alpha (2a) monoclonal antibody IgG as a model system, we successfully extracted the antigen protein and determined the approximate binding region for the antigen/antibody interaction (i.e., the tryptic fragment responsible). Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Antibody was covalently immobilized by amine coupling method to gold surfaces modified with a self-assembled monolayer of thioctic acid. The electrochemical measurements of cyclic voltammetry and impedance spectroscopy showed that the hexacyanoferrate redox reactions on the gold surface were blocked due to the procedures of self-assembly of thioctic acid and antibody immobilization. The binding of a specific antigen to antibody recognition layer could be detected by measurements of the impedance change. A new amplification strategy was introduced for improving the sensitivity of impedance measurements using biotin labeled protein- streptavidin network complex. This amplification strategy is based on the construction of a molecular complex between streptavidin and biotin labeled protein. This complex can be formed in a cross-linking network of molecules so that the amplification of response signal will be realized due to the big molecular size of complex. The results show that this amplification strategy causes dramatic improvement of the detection sensitivity of hIgG and has good correlation for detection of hIgG in the range of 2-10 mug/ml. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The interactions of Safranin T (ST) with several nucleic acids have been investigated by electrochemical, UV-visible and CD spectroscopic techniques. The form of the nucleic acid-ST complexes is sensitive to the ratio of the two species. Two electrochemically inactive complexes such as, nucleic acid-ST and nucleic acid-2ST, were formed while ST interacts with nucleic acids. Two processes were obtained from spectral experiments: (1) at the high value of R (R is defined as the ratio of the total concentration of ST to that of nucleic acid), ST is groove-binding with stacking, (2) st the low value of R, ST is groove-binding without stacking. Intrinsic binding constants were obtained by spectral methods. The experiments also show that electrostatic binding plays an important role in the interaction of ST with nucleic acids.
Resumo:
In the title compounds, 3-[(4-amino-2-methyl-5-pyrimidinio)methyl] -5-(2-hydroxyethyl)-4-methylthiazolium(2+) 3-[(4-amino-2-mcthyl-5-pyrimidinyl)methyl]-5-(2-hydroxyethyl)-4-methylthiazolium( 1+) heptaiododimercurate dihydrate, (C12H18N4OS)(C12H17N4OS)[Hg2I7]. 2H(2)O, (I), and its dimethanol monohydrate, (C12H18N4OS)(C12H17N4OS)[Hg2I7]. 2CH(3)OH . H2O (2), a crystallographic centre of symmetry in (1) or a twofold axis in (2) is imposed between the protonated and deprotonated thiamine molecules, resulting in a statistically half-occupied proton attached at N1' of the pyrimidine ring. The Hg2I73- anion, residing on the centre of symmetry in (1) or on the twofold axis in (2), interacts with two thiamine molecules, each through a C2-H ... I ... pyrimidine-ring interaction. This bridging interaction is a characteristic of thiamine in the F conformation.
Resumo:
The blends of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (P(HB-co-HV)/poly(p-vinylphenol)(PVPh) were investigated by differential scanning calorimetry (DSC), Fourier transform IR (FT-IR) spectroscopy and high-resolution solid-state C-13 NMR techniques. Single glass transition temperatures existing in the whole composition range indicates that these blends are miscible. The presence of hydrogen bonding between the hydroxyl of PVPh and carbonyl of P(HB-co-HV), shown by FT-IR spectra, is the origin of the miscibility. Furthermore, results obtained by high-resolution solid-state C-13 NMR give more information about the structure of the blends. (C) 1998 Elsevier Science Ltd. All rights reserved.