939 resultados para Platelet adhesion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New preventive approaches against dental erosion caused by acidic drinks and beverages include fortification of beverages with natural polymers. We have shown that the mixture of casein and mucin significantly improved the erosion-inhibiting properties of the human pellicle layer. This study aimed to investigate the effect of pellicle modification by casein, mucin and a casein-mucin mixture on the adhesion of early bacterial colonizers. Test specimens of human tooth enamel were prepared, covered with saliva and coated with 0.5% aqueous (aq.) casein, 0.27% aq. mucin or with 0.5% aq. casein-0.27% aq. mucin, after which the adhesion of Streptococcus gordonii, Streptococcus oralis, and Actinomyces odontolyticus was measured after incubation for 30 min and 2 h. log10 colony-forming units were compared by nonparametric tests. All three bacterial strains adhered in higher number to pellicle-coated enamel than to native enamel. The protein modifications of pellicle all decreased the counts of adhering bacteria up to 0.34 log10/mm2, the most efficient being the casein-mucin mixture. In addition to the recently shown erosion-reducing effect by casein-mucin, modification of the pellicle may inhibit bacterial adherence compared to untreated human pellicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To determine efficacy of a single intra-articular injection of an autologous platelet concentrate for treatment of osteoarthritis in dogs. DESIGN Randomized, controlled, 2-center clinical trial. ANIMALS 20 client-owned dogs with osteoarthritis involving a single joint. PROCEDURES Dogs were randomly assigned to a treatment or control group. In all dogs, severity of lameness and pain was scored by owners with the Hudson visual analog scale and the University of Pennsylvania Canine Brief Pain Inventory, respectively, and peak vertical force (PVF) was determined with a force platform. Dogs in the treatment group were then sedated, and a blood sample (55 mL) was obtained. Platelets were recovered by means of a point-of-use filter and injected intra-articularly within 30 minutes. Control dogs were sedated and given an intra-articular injection of saline (0.9% NaCl) solution. Assessments were repeated 12 weeks after injection of platelets or saline solution. RESULTS Dogs weighed between 18.3 and 63.9 kg (40.3 and 140.6 lb) and ranged from 1.5 to 8 years old. For control dogs, lameness scores, pain scores, and PVF at week 12 were not significantly different from pretreatment values. In contrast, for dogs that received platelet injections, lameness scores (55% decrease in median score), pain scores (53% decrease in median score), and PVF (12% increase in mean PVF) were significantly improved after 12 weeks, compared with pretreatment values. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that a single intra-articular injection of autologous platelets resulted in significant improvements at 12 weeks in dogs with osteoarthritis involving a single joint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Cell-derived plasma microparticles (<1.5 μm) originating from various cell types have the potential to regulate thrombogenesis and inflammatory responses. The aim of this study was to test the hypothesis that microparticles generated during hepatic surgery co-regulate postoperative procoagulant and proinflammatory events. METHODS In 30 patients undergoing liver resection, plasma microparticles were isolated, quantitated, and characterized as endothelial (CD31+, CD41-), platelet (CD41+), or leukocyte (CD11b+) origin by flow cytometry and their procoagulant and proinflammatory activity was measured by immunoassays. RESULTS During liver resection, the total numbers of microparticles increased with significantly more Annexin V-positive, endothelial and platelet-derived microparticles following extended hepatectomy compared to standard and minor liver resections. After liver resection, microparticle tissue factor and procoagulant activity increased along with overall coagulation as assessed by thrombelastography. Levels of leukocyte-derived microparticles specifically increased in patients with systemic inflammation as assessed by C-reactive protein but are independent of the extent of liver resection. CONCLUSIONS Endothelial and platelet-derived microparticles are specifically elevated during liver resection, accompanied by increased procoagulant activity. Leukocyte-derived microparticles are a potential marker for systemic inflammation. Plasma microparticles may represent a specific response to surgical stress and may be an important mediator of postoperative coagulation and inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stan Heptinstall's contributions to platelet research covered organising meetings at the national and European level as well as starting and maintaining the journal "Platelets". The major part of his research addressed problems of inhibition of platelet receptors and the effects of this on patient health. In particular, the effects of P2Y12 inhibitors on patients with acute cardiovascular problems were a major focus. Other studies included the effects of feverfew (Tanacetum parthenium) extracts on platelets, of direct anti-IIb/IIIa receptor (αIIbβ3) inhibitors and of prostanoids on platelet function. Recently, methods for assessing the effectiveness of platelet inhibition were investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upon activation, platelets release plasma-membrane derived microparticles (PMPs) exposing phosphatidylserine (PS) on their surface. The function and clearance mechanism of these MPs are incompletely understood. As they are pro-coagulant and potentially pro-inflammatory, rapid clearance from the circulation is essential for prevention of thrombotic diseases. The tyrosine kinase receptors Tyro3, Axl and Mer (TAMs) and their ligands protein S and Gas6 are involved in the uptake of PS-exposing apoptotic cells in macrophages and dendritic cells. Both TAMs and their ligands are expressed in the vasculature, the functional significance of which is poorly understood. In this study we investigated how vascular TAMs and their ligands may mediate endothelial uptake of PMPs. PMPs, generated from purified human platelets, were isolated by ultracentrifugation and labeled with biotin or PKH67. The uptake of labeled MPs in the presence of protein S and Gas6 in human aortic endothelial cells (HAEC) and human umbilical vein endothelial cells (HUVEC) was monitored by flow cytometry, western blotting and confocal/electron microscopy. We found that both endothelial cell types can phagocytose PMPs, and using TAM-blocking antibodies or siRNA knock-down of individual TAMs we show that the uptake is mediated by endothelial Axl and Gas6. As circulating PMPs-levels were not altered in Gas6-/- mice compared to Gas6+/+ mice, we hypothesize that the Gas6-mediated uptake is not a means to clear the bulk of circulating PMPs but may serve to phagocytose PMPs locally generated at sites of platelet activation and as a way to affect endothelial responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three canonical Rho GTPases RhoA, Rac1 and Cdc42 co-ordinate cytoskeletal dynamics. Recent studies indicate that all three Rho GTPases are activated at the leading edge of motile fibroblasts, where their activity fluctuates at subminute time and micrometer length scales. Here, we use a microfluidic chip to acutely manipulate fibroblast edge dynamics by applying pulses of platelet-derived growth factor (PDGF) or the Rho kinase inhibitor Y-27632 (which lowers contractility). This induces acute and robust membrane protrusion and retraction events, that exhibit stereotyped cytoskeletal dynamics, allowing us to fairly compare specific morphodynamic states across experiments. Using a novel Cdc42, as well as previously described, second generation RhoA and Rac1 biosensors, we observe distinct spatio-temporal signaling programs that involve all three Rho GTPases, during protrusion/retraction edge dynamics. Our results suggest that Rac1, Cdc42 and RhoA regulate different cytoskeletal and adhesion processes to fine tune the highly plastic edge protrusion/retraction dynamics that power cell motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion is an intricate process involving adhesion promoting ligands such as laminin and fibronectin, surface receptors for these ligands and a complex interplay of metabolic and cytoskeletal events (Geiger, BBA 737:305, 1983). Although considerable effort has been directed towards studying adhesion molecules such as fibronectin (Fn), very little is known about the mechanisms regulating the complex process of adhesion.^ I chose to use a CHO adhesion variant clone called AD('v)F11 as a tool to study the various steps which may be involved in adhesion. AD('v)F11 cells unlike wild type (WT), do not adhere to Fn-coated substrata, but will adhere to substrata coated with other extracellular components (Harper and Juliano, J Cell Biol. 91:647, 1981). I have found that although AD('v)F11 cells can bind Fn-coated latex beads to the same extent as WT cells, AD('v)F11 cells also differed from WT cells in that they did not aggregate in the presence of Fn-beads nor internalize Fn-beads. The defect in bead induced cell aggregation and internalization seem to be specific to Fn since lectin coated beads could aggregate AD('v)F11 cells as well as WT cells, and AD('v)F11 cells can also readily internalize lectins. These observations suggest that the defect associated with AD('v)F11 cells is distal to the initial binding to Fn to its cell surface receptor. To further investigate the biochemical defect associated with AD('v)F11 cells, a panel of compounds were examined for their ability to correct the non-adhesive phenotype of AD('v)F11 cells. Among the compounds tested, only those known to increase intracellular cAMP levels were found to be effective in correcting the adhesion defect of F11CA11 cells, a subclone of AD('v)F11 cells.^ Since cAMP effects in eukaryotic cells are mediated through phosphorylation events by the cAMP-dependent protein kinase (cAdPK) system, the phosphorylation pattern and cAdPK system of the F11CA11 cells were analyzed. Comparison between the phosphorylation pattern of intact untreated F11CA11 and WT cells, revealed the presence of a 50 kd phosphoprotein(s) in WT cells but not in F11CA11 cells. Results presented in this dissertation strongly indicate that the adhesion defect in F11CA11 is associated to an altered type I cAdPK that can be corrected by raising intracellular cAMP levels. (Abstract shortened with permission of author.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid rafts are small laterally mobile cell membrane structures that are highly enriched in lymphocyte signaling molecules. Lipid rafts can form from the assembly of specialized lipids and proteins through hydrophobic associations from saturated acyl chains. GM1 gangliosides are a common lipid raft component and have been shown to be essential in many T cell functions. Current lipid raft theory hypothesizes that certain aspects of T cell signaling can be initiated from the coalescence of these signaling-enriched lipid rafts to sites of receptor engagement. We have described how the specific aggregation of GM1 lipid rafts can cause a reorganization of cell surface molecular associations which include dynamic associations of β1 integrins with GM1 lipid rafts. These associations had pronounced effects on T cell adhesive and migratory states. We show that GM1 lipid raft aggregation can dramatically inhibit T cell migration and chemotaxis on the extracellular matrix constituent fibronectin. This inhibition of migration function was shown to be dependent on the src kinase Lck and PKC-regulated F-actin polymerization to extending pseudopods. Furthermore, GM1 lipid raft clustering could activate T cell adhesion-strengthening mechanisms. These include an increase in cellular rigidity, the creation of polymerized cortical F-actin structures, the induction of high affinity integrin states, an increase in surface area and symmetry of the contact plane, and resistance to shear flow detachment while adherent to fibronectin. This indicates that GM1 lipid raft aggregation defines a novel stimulus to regulate lymphocyte motility and cellular adhesion which could have important implications in T cell homing mechanisms. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p53 transcription factor is a tumor suppressor and a master regulator of apoptosis and the cell cycle in response to cell stress. In some advanced tumors, such as prostate cancers, the loss of p53 correlates with an increase in the occurrence of metastases. In addition, several groups have suggested that p53 status correlates with changes in cell migration and cell morphology associated with a migratory phenotype. Others have identified several genes with roles in cell migration that are directly transcriptionally regulated by p53. Even so, modulation of cell migration is not widely recognized as a p53 stress response. ^ In an effort to identify novel p53 target genes and expand our knowledge of the p53 transcriptional response, we performed Affymetrix gene expression analysis in p53-null PC3 prostate cancer cells following infection with a control virus or adenoviral construct expressing wild-type p53. Over 300 genes that had not been previously recognized as p53 target genes were identified. Of these genes, 224 were upregulated and 111 were downregulated (p<0.05). Functional over-representation analysis identified cell migration as a significantly over-represented biological function of p53. Further analysis identified two genes that are critical for the control of cell migration as potential p53 targets. One, hyaluronan mediated motility receptor (HMMR), has recently been shown to be a p53 target important for regulation of the cell cycle. Here, we show that HMMR is downregulated by p53 in several cell lines, and HMMR's regulation is dependent on the presence of the cdk inhibitor, p21, and histone deactelyase activity. The other gene, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), itself a tumor suppressor, is shown here, for the first time, as a p53 direct target by ChIP analysis. We next determined the effect of p53 activation on cell migration and found that p53 significantly slows the rate of cell migration in Boyden chamber migration assays and digital videomicroscopy wound healing studies. Further, our studies established the specific roles of CEACAM1 and HMMR in cell migration and determine that loss of CEACAM1 and overexpression of HMMR independently contribute to increased cell migration. Taken together, these studies provide a direct mechanistic link between p53 to the regulatory control of specific target genes that mediate cell adhesion and migration. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycoprotein (GP) Ib-IX complex, the second most abundant receptor expressed on the platelet surface, plays critical roles in haemostasis and thrombosis by binding to its ligand, von Willebrand factor (vWF). Defect or malfunction of the complex leads to severe bleeding disorders, heart attack or stroke. Comprised of three type I transmembrane subunits—GPIbα, GPIbβ and GPIX, efficient expression of the GPIb-IX complex requires all three subunits, as evident from genetic mutations identified in the patients and reproduced in transfected Chinese hamster ovary (CHO) cells. However, how the subunits are assembled together and how the complex function is regulated is not fully clear. By probing the interactions among the three subunits in transfected cells, we have demonstrated that the transmembrane domains of the three subunits interact with one another, facilitating formation of the two membrane-proximal disulfide bonds between GPIbα and GPIbβ. We have also identified the interface between extracellular domains of GPIbβ and GPIX, and provided evidence suggesting a direct interaction between extracellular domains of GPIbα and GPIX. All of these interactions are not only critical for correct assembly and consequently efficient expression of the GPIb-IX complex on the cell surface, but also for its function, such as the proper ligand binding, since removing the two inter-subunit disulfide bonds significantly hampers vWF binding to the complex under both static and physiological flow conditions. The two inter-subunit disulfide bonds are also critical for regulating the ectodomain shedding of GPIbα by the GPIbβ cytoplasmic domain. Mutations in the juxtamembrane region of the GPIbβ cytoplasmic domain deregulate GPIbα shedding, and such deregulation is further enhanced when the two inter-subunit disulfide bonds are removed. In summary, we have established the overall organization of the GPIb-IX complex, and the importance of proper organization on its function. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell differentiation and pattern formation are fundamental processes in animal development that are under intense investigation. The mouse retina is a good model to study these processes because it has seven distinct cell types, and three well-laminated nuclear layers that form during embryonic and postnatal life. β-catenin functions as both the nuclear effector for the canonical Wnt pathway and a cell adhesion molecule, and is required for the development of various organs. To study the function of β-catenin in retinal development, I used a Cre-loxP system to conditionally ablate β-catenin in the developing retina. Deletion of β-catenin led to disrupted laminar structure but did not affect the differentiation of any of the seven cell types. Eliminating β-catenin did not reduce progenitor cell proliferation, although enhanced apoptosis was observed. Further analysis showed that disruption of cell adhesion was the major cause of the observed patterning defects. Overexpression of β-catenin during retinal development also disrupted the normal retinal lamination and caused a transdifferentiation of neurons into pigmented cells. The results indicate that β-catenin functions as a cell adhesion molecule but not as a Wnt pathway component during retinal neurogenesis, and is essential for lamination but not cell differentiation. The results further imply that retinal lamination and cell differentiation are genetically separable processes. ^ Sonic hedgehog (shh) is expressed in retinal ganglion cells under the control of transcription factor Pou4f2 during retinal development. Previous studies identified a phylogenetically conserved region in the first intron of shh containing a Pou4f2 binding site. Transgenic reporter mice in which reporter gene expression was driven by this region showed that this element can direct gene expression specifically in the retina, but expression was not limited to the ganglion cells. From these data I hypothesized that this element is required for shh expression in the retina but is not sufficient for specific ganglion cell expression. To further test this hypothesis, I created a conditional allele by flanking this region with two loxP sites. Lines carrying this allele will be crossed with retinal-specific Cre lines to remove this element in the retina. My hypothesis predicts that alteration in shh expression and subsequent retinal defects will occur in the retinas of these mice. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Resistance to targeted anti-angiogenic therapy is a growing clinical concern given the disappointing clinical impact of anti-angiogenic. Platelets represent a component of the tumor microenvironment that are implicated in metastasis and represent a significant reservoir of angiogenic regulators. Thrombocytosis has been shown to be caused by malignancy and associated with adverse clinical outcomes, however the causal connections between these associations remain to be identified. Materials and Methods: Following IRB approval, patient data were collected on patients from four U.S. centers and platelet levels through and after therapy were considered as indicators of recurrence of disease. In vitro effects of platelets on cancer cell proliferation, apoptosis, and migration were examined. RNA interference was used to query signaling pathways mediating these effects. The necessity of platelet activation for in vitro effect was analyzed. In vivo orthotopic models were used to query the impact of thrombocytosis and thrombocytopenia on the efficacy of cytotoxic chemotherapy, the effect of aspirin on thrombocytosis and cancer, and platelet effect on anti-angiogenic therapy. Results: Platelets were found to increase at the time of diagnosis of ovarian cancer recurrence in a pattern comparable to CA-125. Platelet co-culture increased proliferation, increased migration, and decreased apoptosis in all cell lines tested. RNA interference implicated platelet derived growth factor alpha (PDGFRA) and transforming growth factor beta-receptor 1 (TGFBR1) signaling. Biodistribution studies suggested minimal platelet sequestration of taxanes. Blockade of platelet activation blocked in vitro effects. In vivo, thrombocytosis blocked chemotherapeutic efficacy, thrombocytopenia increased chemotherapeutic efficacy, and aspirin therapy partially blocked the effects of thrombocytosis. In vivo, withdrawal of anti-angiogenic therapy caused loss of therapeutic benefit with evidence of accelerated disease growth. This effect was blocked by use of a small-molecule inhibitor of Focal Adhesion Kinase. Anti-angiogenic therapy was also associated with increased platelet infiltration into tumor that was not seen to the same degree in the control or FAK-inhibitor-treated mice. Conclusions: Platelets are active participants in the growth and metastasis of tumor, both directly and via facilitation of angiogenesis. Blocking platelets, blocking platelet activation, and blocking platelet trafficking into tumor are novel therapeutic avenues supported by this data. Copyright © 2012 Justin Neal Bottsford-Miller, all rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-CAM 105 has been identified as a cell adhesion molecule (CAM) based on the ability of monospecific and monovalent anti-cell-CAM 105 antibodies to inhibit the reaggregation of rat hepatocytes. Although one would expect to find CAMs concentrated in the lateral membrane domain where adhesive interactions predominate, immunofluorescence analysis of rat liver frozen sections revealed that cell-CAM 105 was present exclusively in the bile canalicular (BC) domain of the hepatocyte. To more precisely define the in situ localization of cell-CAM 105, immunoperoxidase and electron microscopy were used to analyze intact and mechanically dissociated fixed liver tissue. Results indicate that although cell-CAM 105 is apparently restricted to the BC domain in situ, it can be detected in the pericanalicular region of the lateral membranes when accessibility to lateral membranes is provided by mechanical dissociation. In contrast, when hepatocytes were labeled following incubation in vitro under conditions used during adhesion assays, cell-CAM 105 had redistributed to all areas of the plasma membrane. Immunofluorescence analysis of primary hepatocyte cultures revealed that cell-CAM 105 and two other BC proteins were localized in discrete domains reminscent of BC while cell-CAM 105 was also present in regions of intercellular contact. These results indicate that the distribution of cell-CAM 105 under the experimental conditions used for cell adhesion assays differs from that in situ and raises the possibility that its adhesive function may be modulated by its cell surface distribution. The implications of these and other findings are discussed with regard to a model for BC formation.^ Analysis of molecular events involved in BC formation would be accelerated if an in vitro model system were available. Although BC formation in culture has previously been observed, repolarization of cell-CAM 105 and two other domain-specific membrane proteins was incomplete. Since DMSO had been used by Isom et al. to maintain liver-specific gene expression in vitro, the effect of this differentiation system on the polarity of these membrane proteins was examined. Based on findings presented here, DMSO apparently prolongs the expression and facilitates polarization of hepatocyte membrane proteins in vitro. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gliomas are primary central nervous system (CNS) neoplasms that are believed to arise from astrocytes, oligodendrocytes or their precursors. Gliomas can be classified into two major histopathological groups: oligodendroglial and astroglial tumors. The most malignant of the astroglial tumors is glioblastoma multiforme (GBM). A great deal of genetic and epigenetic alterations have been implicated in gliomagenesis. In particular, PDGF signaling is frequently over-activated in a large number of human gliomas. In order to gain insights into the biology of gliomas, we manage to model human gliomas in mice using a somatic gene transfer approach—RCAS/TVA system. In our previous study, combined activation of AKT and RAS pathways gave rise to glioblastomas from CNS progenitors. In the present study, we demonstrate that in vivo autocrine PDGF stimulation induces oligodendrogliomas and mixed oligoastrocytomas from CNS progenitors and differentiated astrocytes respectively. In culture autocrine PDGF stimulation dedifferentiates astrocytes into progenitor-like cells and blockade of PDGF signaling reverses these phenotypic changes. Experimental disruption of cell cycle arrest pathway, such as Ink4a-Arf loss, is not required for the initiation of PDGF-induced gliomagenesis; instead, this mutation contributes to the tumor progression by enhancing tumor malignancy and shortening tumor latency. P53 deficiency does not promote the PDGF-induced gliomagenesis. In addition, 1p and 19q, often deleted in human oligodendrogliomas, remain intact in these PDGF-induced gliomas. Therefore, our studies suggest that autocrine PDGF stimulation alone may be sufficient to induce gliomagenesis. In contrast to transient stimulation in vitro, constitutive PDGF stimulation activates neither AKT nor RAS/MAPK pathways during gliomagenesis. This results in the formation of oligodendrogliomas, instead of glioblastomas. Sustained activation of the AKT pathway converts PDGF-induced oligodendrogliomas into astrocytomas. Our studies suggest that constitutive PDGF stimulation is not equivalent to transient PDGF stimulation, and that a transition between oligodendroglial and astroglial tumors in humans may be possible, depending on additional alterations. In summary, PDGF signaling plays a pivotal role in gliomagenesis in the mouse, and its hyperactivity is capable of contributing to both oligodendroglial and astroglial tumorigenesis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraviolet radiation plays a critical role in the induction of non-melanoma skin cancer. UV radiation is also immune suppressive. Moreover, UV-induced systemic immune suppression is a major risk factor for skin cancer induction. Previous work had shown that UV exposure in vivo activates a cytokine cascade involving PGE2, IL-4, and IL-10 that induces immune suppression. However, the earliest molecular events that occur immediately after UV-exposure, especially those upstream of PGE2, were not well defined. To determine the initial events and mediators that lead to immune suppression after a pathological dose of UV, mouse keratinocytes were analyzed after sunlamp irradiation. It is known that UV-irradiated keratinocytes secrete the phospholipid mediator of inflammation, platelet-activating factor (PAF). Since PAF stimulates the production of immunomodulatory compounds, including PGE2, the hypothesis that UV-induced PAF activates cytokine production and initiates UV-induced immune suppression was tested. Both UV and PAF activated the transcription of cyclooxygenase (COX)-2 and IL-10 reporter gene constructs. A PAF receptor antagonist blocked UV-induced IL, 10 and COX-2 transcription. PAF mimicked the effects of UV in vivo and suppressed delayed-type hypersensitivity (DTH), and immune suppression was blocked when UV-irradiated mice were injected with a PAF receptor antagonist. This work shows that UV generates PAF-like oxidized lipids, that signal through the PAF receptor, activate cytokine transcription, and induce systemic immune suppression. ^