1000 resultados para Plasma contraction
Resumo:
Inductively coupled plasma (ICP) etching of InP in Cl-2/BCl3 gas mixtures is studied in order to achieve low-damage and high-anisotropy etching of two-dimensional InP/InGaAsP photonic crystal. The etching mechanisms are discussed and the effect of plasma heating on wafer during etching is analyzed. It is shown that the balance between the undercut originating from plasma heating and the redeposition of sputtering on the side-wall is crucial for highly anisotropic etching, and the balance point moves toward lower bias when the ICP power is increased. High aspect-ratio etching at the DC bias of 203 V is obtained. Eventually, photonic crystal structure with nearly 90 degrees side-wall is achieved at low DC bias after optimization of the gas mixture.
Resumo:
Based on Mach-Zehnder interferometer (MZI) structure, a 2 x 2 optical switch is fabricated on SOI wafer. Modulation of the refractive index of MZI arms is achieved through free carriers plasma dispersion effect of silicon. The device presents an insertion loss as low as 3.44 dB and a response time as small as 300 ns. The crosstalk and extinction ratio are -15.54 and 14.9 dB, respectively. Detailed analysis and explanation of the operating behaviors are also presented. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
High (42.5%) indium content GaInNAs/GaAs quantum wells with room temperature emission wavelength from 1.3 mu m to 1.5 mu m range were successfully grown by Radio Frequency Plasma Nitrogen source assisted Molecular Beam Epitaxy. The growth parameters of plasma power and N-2 How rate were optimized systematically to improve the material quality. Photoluminescence and transmission electron microscopy measurements showed that the optical and crystal quality of the 1.54 mu m GaInNAs/GaAs QWs was kept as comparable as that in 1.31 mu m.
Resumo:
Er-Si-O (Er2SiO5) crystalline films are fabricated by the spin-coating and subsequent annealing process. The fraction of erbium is estimated to be 21.5 at% based on Rutherford backscattering measurement. X-ray diffraction pattern indicates that the Er-Si-O films are similar to Er2SiO5 compound in the crystal structure. The fine structure of room-temperature photoluminescence of Er3+-related transitions suggests that Er has a local environment similar to the Er-O-6 octahedron. Our preliminary results show that the intensity of 1.53 mu m emission is enhanced by a factor of seven after nitrogen plasma treatment by NH3 gas with subsequent post-annealing. The full-width at half-maximum of 1.53 pm emission peak increases from 7.5 to 12.9 nm compared with that of the untreated one. Nitrogen plasma treatment is assumed to tailor Er3+ local environment, increasing the oscillator strength of transitions and thus the excitation/emission cross-section. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Silicon-rich silicon oxide (SRSO) films are prepared by plasma-enhanced chemical vapor deposition method at the substrate temperature of 200degreesC. The effect of rapid thermal annealing and hydrogen plasma treatment on tire microstructure and light-emission of SRSO films are investigated in detail using micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectra. It is found that the phase-separation degree of the films decreases with increasing annealing temperature from 300 to 600degreesC, while it increases with increasing annealing temperature from 600 to 900degreesC. The light-emission of the films are enhanced with increasing annealing temperature up to 500degreesC, while it is rapidly reduced when the annealing temperature exceeds 600degreesC. The peak position of the PL spectrum blueshifts by annealing at the temperature of 300degreesC, then it red-shifts with further raising annealing temperature. The following hydrogen plasma treatment results in a disproportionate increase of the PL intensity and a blueshift or redshift of the peak positions, depending on the pristine annealing temperature. It is thought that the size of amorphous silicon clusters, surface structure of the clusters and the distribution of hydrogen in the films can be changed during the annealing procedure. The results indicate that not only cluster size but also surface state of the clusters plays an important role in the determination of electronic structure of the amorphous silicon cluster and recombination process of light-generated carriers.
Resumo:
To heteroepitaxally grow the crystalline cubic-GaN (c-GaN) film on the substrates with large lattice mismatch is basically important for fabricating the blue or ultraviolet laser diodes based on cubic group III nitride materials. We have obtained the crystalline c-GaN film and the heteroepitaxial interface between c-Gan and GaAs (001) substrate by the ECR Plasma-Assisted Metal Organic Chemical Vapor Deposition (PA-MOCVD) under low-pressure and low-temperature (similar to600degreesC) on a homemade ECR-plasma Semiconductor Processing Device (ESPD). In order to decrease the growth temperature, the ECR plasma source was adopted as the activated nitrogen source, therefore the working pressure of MOCVD was decreased down to the region less than 1 Pa. To eliminate the damages from energetic ions of current plasma source, a Multi-cusp cavity,coupling ECR Plasma source (MEP) was selected to use in our experiment. To decrease the strain and dislocations induced from the large lattice mismatch between c-GaN and GaAs substrate, the plasma pretreatment procedure i.e., the initial growth technique was investigated The experiment arrangements, the characteristics of plasma and the growth procedure, the characteristics on-GaN film and interface between c-GaN and GaAs(001), and the roles of ECR plasma are described in this contribution.
Resumo:
We have studied the growth of GaInNAs/GaAs quantum well (QW) by molecular beam epitaxy using a DC plasma as the N sourer. The N concentration was independent of the As pressure and the In concentration, but inversely proportional to the growth rate. It was almost independent of T, over the range of 400-500 degreesC, but dropped rapidly when T-g exceeded 500 degreesC. Thermally-activated N surface segregation is considered to account for the strong falloff of the N concentration. As increasing N concentration, the steep absorption edge of the photovoltage spectra of GaInNAs/GaAs QW became gentle, the full-width at half-maximum of the photoluminescence (PL) peal; increased rapidly, and a so-called S-shaped temperature dependence of PL peak energy showed up. All these were attributed to the increasing localized state as N concentration. Ion-induced damage was one of the origins of the localized state. A rapid thermal annealing procedure could effectively remote the localized state. (C) 2001 Elsevier Science D.V. All rights reserved.
Resumo:
The optimum growth condition of GaInNAs/GaAs quantum wells (QWs) by plasma-assisted molecular beam epitaxy was investigated. High-resolution X-ray diffraction and photoluminescence (PL) measurements showed that ion damage drastically degraded the quality of GaNAs and GaInNAs QWs and that ion removal magnets can effectively remove the excess ion damage. Remarkable improvement of PL intensity and obvious appearance of pendellosung fringes were observed by removing the N ions produced in the plasma cell. When the growth rate increased from 0.73 to 1.2 ML/s, the optimum growth temperature was raised from 460 degreesC to 480 degreesC and PL peak intensity increased two times. Although the N composition decreased with increasing growth rate, degradation of optical properties of GaInNAs QWs was observed when the growth rate was over 0.92 ML/s. Due to low-temperature growth of GaInNAs QWs, a distinctive reflection high-energy electron diffraction pattern was observed only when the GaAs barrier was grown under lower As-4 pressure. The samples with GaAs barriers grown under lower As-4 pressure (V/III ratio about 24) exhibited seven times increase in PL peak intensity compared with those grown under higher As-4 pressure (V/III ratio about 50). (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
GaInNAs/GaAs single-quantum-well (SQW) lasers have been grown by solid-source molecular beam epitaxy. N is introduced by a home-made de-active plasma source. Incorporation of N into InGaAs decreases the bandgap significantly. The highest N concentration of 2.6% in a GaInNAs/GaAs QW is obtained, corresponding to the photoluminescence (PL) peak wavelength of 1.57 mum at 10 K. The PL peak intensity decreases rapidly and the PL full width at half maximum increases with the increasing N concentrations. Rapid thermal annealing at 850 degrees C could significantly improve the crystal quality of the QWs. An optimum annealing time of 5s at 850 degrees C was obtained. The GalnNAs/GaAs SQW laser emitting at 1.2 mum exhibits a high characteristic temperature of 115 K in the temperature range of 20 degrees C- 75 degrees C.
Resumo:
Effects of rapid thermal annealing and SiO2 encapsulation on GaNAs/GaAs single quantum wells grown by plasma-assisted molecular-beam epitaxy were studied. Photoluminescence measurements on a series of samples with different well widths and N compositions were used to evaluate the effects. The intermixing of GaNAs and GaAs layers was clearly enhanced by the presence of a SiO2-cap layer. However, it was strongly dependent on the N composition. After annealing at 900 degreesC for 30 s, a blueshift up to 62 meV was observed for the SiO2-capped region of the sample with N composition of 1.5%, whereas only a small blueshift of 26 meV was exhibited for the bare region. For the sample with the N composition of 3.1%, nearly identical photoluminescence peak energy shift for both the SiO2-capped region and the bare region was observed. It is suggested that the enhanced intermixing is mainly dominated by SiO2-capped layer induced defects-assisted diffusion for the sample with smaller N composition, while with increasing N composition, the diffusion assisted by interior defects become predominant. (C) 2001 American Institute of Physics.
Resumo:
The effect of ion-induced damage on GaNAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy employing a DC plasma as the N source was investigated. Ion-induced damage results in: (i) an observed disappearance of pendellosung fringes in the X-ray diffraction pattern of the sample; (ii) a drastic decrease in intensity and a broadening in the full-width at half-maximum of photoluminescence spectra. It was shown that ion-induced damage strongly affected the bandedge potential fluctuations of the QWs. The bandedge potential fluctuations for the samples grown with and without ion removal magnets (IRMs) are 44 and 63 meV, respectively. It was found that the N-As atomic interdiffusion at the interfaces of the QWs was enhanced by the ion damage-induced defects. The estimated activation energies of the N-As atomic interdiffusion for the samples grown with and without IRMs are 3.34 and 1.78 eV, respectively. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We have studied the effect of rapid thermal annealing (RTA) on GaInNAs/GaAs quantum wells (QWs) grown by molecular-beam epitaxy using a dc plasma as the N source. It was found that RTA at low temperature (LT, 650 degrees C) and high temperature (HT, 900 degrees C) could both improve the QW quality significantly. To clarify the mechanism of quality improvement by RTA, a magnetic field perpendicular to the path of the N plasma flux was applied during the growth of the GaInNAs layers for the sake of comparison. It was found that LT-RTA mainly removed dislocations at interfaces related to the ion bombardment, whereas, HT-RTA further removed dislocations originating from the growth. LT-RTA caused only a slight blueshift of photoluminescence peak wavelength, probably due to defect-assisted interdiffusion of In-Ga at the QW interfaces. The blueshift caused by HT-RTA, on the other hand, was much larger. It is suggested that this is due to the fast defect-assisted diffusion of N-As at the QW interfaces. As defects are removed by annealing, the diffusion of In-Ga at interfaces would be predominant. (C) 2000 American Institute of Physics. [S0003- 6951(00)01535-7].
Resumo:
We have studied the growth of GaInNAs by a plasma-assisted molecular-beam epitaxy (MBE). It was found that the N-radicals were incorporated into the epitaxial layer like dopant atoms. In the range of 400-500 degrees C, the growth temperature (T-g) mainly affected the crystal quality of GaInNAs rather than the N concentration. The N concentration dropped rapidly when T-g exceeded 500 degrees C. Considering N desorption alone is insufficient to account for the strong falloff of the N concentration with T-g over 500 degrees C, the effect of thermally-activated N surface segregation must be taken into account. The N concentration was independent of the arsenic pressure and the In concentration in GaInNAs layers, but inversely proportional to the growth rate. Based on the experimental results, a kinetic model including N desorption and surface segregation was developed to analyze quantitatively the N incorporation in MBE growth. (C) 2000 American Institute of Physics. [S0003-6951(00)00928-1].
Resumo:
The micro-Raman spectroscopy and infrared (IR) spectroscopy have been performed for the study of the microstructure of amorphous hydrogenated oxidized silicon (alpha-SiOx,:H) films prepared by Plasma Enhanced Chemical Vapor Deposition technique. It is found that a-SiOx:H consists of two phases: an amorphous silicon-rich phase and an oxygen-rich phase mainly comprised of HSi-SiO2 and HSi-O-3. The Raman scattering; results exhibit that the frequency of TO-like mode of amorphous silicon red-shifts with decreasing size of silicon-rich region. This is related to the quantum confinement effects, similar to the nanocrystalline silicon.
Resumo:
Nanocrystalline Ge:H thin films were deposited simultaneously on both electrodes of a conventional capacitively coupled reactor for plasma enhanced chemical vapor deposition using highly H-2 diluted GeH4 as the source gas. The structure of the films was investigated by Raman scattering and X-ray diffraction as a function of substrate temperature, H-2 dilution, and r.f. power. The hydrogen concentrations and bonding configurations were determined by infrared absorption spectroscopy. For anodic deposition, the preferred crystallographic orientation and film crystallinity depend rather strongly on the deposition parameters. This dependence can be explained by changing surface mobilities of adsorbed precursors due to changes in the hydrogen coverage of the growing surface. Cathodic deposition is much less sensitive to variations in the deposition parameters. It generally results in films of high crystallinity with randomly oriented crystallizes. Some possible mechanisms for these differences between anodic and cathodic deposition are discussed. (C) 1999 Elsevier Science S.A. All rights reserved.