947 resultados para Other Biochemistry, Biophysics, and Structural Biology
Resumo:
The aim of this study was the isolation of the LAAO from Lachesis muta venom (LmLAAO) and its biochemical, functional and structural characterization. Two different purification protocols were developed and both provided highly homogeneous and active LmLAAO. It is a homodimeric enzyme with molar mass around 120 kDa under non-reducing conditions, 60 kDa under reducing conditions in SDS-PAGE and 60852 Da by mass spectrometry. Forty amino acid residues were directly sequenced from LmLAAO and its complete cDNA was identified and characterized from an Expressed Sequence Tags data bank obtained from a venom gland. A model based on sequence homology was manually built in order to predict its three-dimensional structure. LmLAAO showed a catalytic preference for hydrophobic amino acids (K-m of 0.97 mmol/L with Leu). A mild myonecrosis was observed histologically in mice after injection of 100 mu g of LmLAAO and confirmed by a 15-fold increase in CK activity. LmLAAO induced cytotoxicity on AGS cell line (gastric adenocarcinoma, IC50: 22.7 mu g/mL) and on MCF-7 cell line (breast adenocarcinoma, IC50:1.41 mu g/mL). It presents antiparasitic activity on Leishmania brasiliensis (IC50: 2.22 mu g/nnL), but Trypanosoma cruzi was resistant to LmLAAO. In conclusion, LmLAAO showed low systemic toxicity but important in vitro pharmacological actions. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we characterized the conventional physicochemical properties of the complexes formed by plasmid DNA (pDNA) and cationic liposomes (CL) composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (50/25/25% molar ratio). We found that these properties are nearly unaffected at the studied ranges when the molar charge ratio (R-+/-) between the positive charge from the CL and negative charge from pDNA is not close to the isoneutrality region (R-+/- = 1). However, the results from in vitro transfection of HeLa cells showed important differences when R-+/- is varied, indicating that the relationships between the physicochemical and biological characteristics were not completely elucidated. To obtain information regarding possible liposome structural modifications, small-angle X-ray scattering (SAXS) experiments were performed as a function of R-+/- to obtain correlations between structural, physicochemical, and transfection properties. The SAXS results revealed that pDNA/CL complexes can be described as being composed of single bilayers, double bilayers, and multiple bilayers, depending on the R-+/- value. Interestingly, for R-+/- = 9, 6, and 3, the system is composed of single and double bilayers, and the fraction of the latter increases with the amount of DNA (or a decreasing R-+/-) in the system. This information is used to explain the transfection differences observed at an R-+/- = 9 as compared to R-+/- = 3 and 6. Close to the isoneutrality region (R-+/- = 1.8), there was an excess of pDNA, which induced the formation of a fraction of aggregates with multiple bilayers. These aggregates likely provide additional resistance against the release of pDNA during the transfection phenomenon, reflected as a decrease in the transfection level. The obtained results permitted proper correlation of the physicochemical and structural properties of pDNA/CL complexes with the in vitro transfection of HeLa cells by these complexes, contributing to a better understanding of the gene delivery process.
Resumo:
Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanoconnposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 X 10(-5) respectively.
Resumo:
The effects of edge covalent functionalization on the structural, electronic, and optical properties of elongated armchair graphene nanoflakes (AGNFs) are analyzed in detail for a wide range of terminations, within the framework of Hartree-Fock-based semiempirical methods. The chemical features of the functional groups, their distribution, and the resulting system symmetry are identified as the key factors that determine the modification of strutural and optoelectronic features. While the electronic gap is always reduced in the presence of substituents, functionalization-induced distortions contribute to the observed lowering by about 35-55% This effect is paired with a red shift of the first optical peak, corresponding to about 75% of the total optical gap reduction. Further, the functionalization pattern and the specific features of the edge-substituent bond are found to influence the strength and the character of the low-energy excitations. All of these effects are discussed for flakes of different widths, representing the three families of AGNFs.
Resumo:
Abstract Background The gene coding for the uncharacterized protein PAB1135 in the archaeon Pyrococcus abyssi is in the same operon as the ribonuclease P (RNase P) subunit Rpp30. Findings Here we report the expression, purification and structural analysis of PAB1135. We analyzed the interaction of PAB1135 with RNA and show that it binds efficiently double-stranded RNAs in a non-sequence specific manner. We also performed molecular modeling of the PAB1135 structure using the crystal structure of the protein Af2318 from Archaeoglobus fulgidus (2OGK) as the template. Conclusions Comparison of this model has lead to the identification of a region in PAB1135 that could be involved in recognizing double-stranded RNA.
Resumo:
Background The increase in fructose consumption is paralleled by a higher incidence of metabolic syndrome, and consequently, cardiovascular disease mortality. We examined the effects of 8 weeks of low intensity exercise training (LET) on metabolic, hemodynamic, ventricular and vascular morphological changes induced by fructose drinking in male rats. Methods Male Wistar rats were divided into (n = 8 each) control (C), sedentary fructose (F) and ET fructose (FT) groups. Fructose-drinking rats received D-fructose (100 g/l). FT rats were assigned to a treadmill training protocol at low intensity (30% of maximal running speed) during 1 h/day, 5 days/week for 8 weeks. Measurements of triglyceride concentrations, white adipose tissue (WAT) and glycemia were carried out together with insulin tolerance test to evaluate metabolic profile. Arterial pressure (AP) signals were directly recorded. Baroreflex sensitivity (BS) was evaluated by the tachycardic and bradycardic responses. Right atria, left ventricle (LV) and ascending aorta were prepared to morphoquantitative analysis. Results LET reduced WAT (−37.7%), triglyceride levels (−33%), systolic AP (−6%), heart weight/body weight (−20.5%), LV (−36%) and aortic (−76%) collagen fibers, aortic intima-media thickness and circumferential wall tension in FT when compared to F rats. Additionally, FT group presented improve of BS, numerical density of atrial natriuretic peptide granules (+42%) and LV capillaries (+25%), as well as the number of elastic lamellae in aorta compared with F group. Conclusions Our data suggest that LET, a widely recommended practice, seems to be particularly effective for preventing metabolic, hemodynamic and morphological disorders triggered by MS.
Resumo:
The objective of this research was to assess morphogenetic and structural characteristics of tillers of guinea grass cv. Tanzania at different ages. The pastures of guinea grass were managed in six pasture conditions related to the combination of three frequencies (90, 95, and 99% light interception) and two post-grazing heights (25 and 50 cm). In these six pastures conditions, three tiller ages were evaluated (young, mature, and old). The design was of completely randomized block with three replications. Young tillers exhibited higher leaf appearance rate and leaf elongation rate and, consequently, higher final leaf length and number of live leaves than mature and old tillers, regardless of the pasture condition. On pastures managed with 90 or 95% light interception associated with a post-grazing height of 25 cm, old tillers presented longer leaf lifespan than young and mature ones. There is a progressive reduction in the vigor of growth of pastures of guinea grass cv. Tanzania with advancing tiller age.
Resumo:
Background: Sleeping sickness is a major cause of death in Africa. Since no secure treatment is available, the development of novel therapeutic agents is urgent. In this context, the enzyme trypanothione reductase (TR) is a prominent molecular target that has been investigated in drug design for sleeping sickness. Results: In this study, comparative molecular field analysis models were generated for a series of Trypanosoma brucei TR inhibitors. Statistically significant results were obtained and the models were applied to predict the activity of external test sets, with good correlation between predicted and experimental results. We have also investigated the structural requirements for the selective inhibition of the parasite's enzyme over the human glutathione reductase. Conclusion: The quantitative structure-activity relationship models provided valuable information regarding the essential molecular requirements for the inhibitory activity upon the target protein, providing important insights into the design of more potent and selective TR inhibitors.
Resumo:
A theoretical approach is used here to explain experimental results obtained from the electrosynthesis of polypyrrole-2-carboxylic acid (PPY-2-COOH) films in nonaqueous medium. An analysis of the Fukui function (reactivity index) indicates that the monomer (pyrrole-2-carboxylic acid, PY-2-COOH), and dimers and trimers are oxidized in the C4 or C5 positions of the heterocyclic ring of the PY-2-COOH structure. After calculating the heat of formation using semiempirical Austin Model 1 post-Hartree-Fock parameterization for dimer species, both C4 and C5 positions adjacent to the aromatic rings of PPY-2-COOH were considered the most susceptible ones to oxidative coupling reactions. The ZINDO-S/CI semiempirical method was used to simulate the electronic transitions typically seen in the UV-VIS-NIR range in monomer and oligomers with different conjugation lengths. The use of an electrochemical quartz crystal microbalance provides sufficient information to propose a polymerization mechanism of PY-2-COOH based on molecular modeling and experimental results.
Resumo:
The inherent stochastic character of most of the physical quantities involved in engineering models has led to an always increasing interest for probabilistic analysis. Many approaches to stochastic analysis have been proposed. However, it is widely acknowledged that the only universal method available to solve accurately any kind of stochastic mechanics problem is Monte Carlo Simulation. One of the key parts in the implementation of this technique is the accurate and efficient generation of samples of the random processes and fields involved in the problem at hand. In the present thesis an original method for the simulation of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields is proposed. The algorithm has proved to be very accurate in matching both the target spectrum and the marginal probability. The computational efficiency and robustness are very good too, even when dealing with strongly non-Gaussian distributions. What is more, the resulting samples posses all the relevant, welldefined and desired properties of “translation fields”, including crossing rates and distributions of extremes. The topic of the second part of the thesis lies in the field of non-destructive parametric structural identification. Its objective is to evaluate the mechanical characteristics of constituent bars in existing truss structures, using static loads and strain measurements. In the cases of missing data and of damages that interest only a small portion of the bar, Genetic Algorithm have proved to be an effective tool to solve the problem.
Resumo:
This work studies the impact of two traditional Romanian treatments, Red Petroleum and Propolis, in terms of real efficiency and consequence on the wooden artifacts. The application of these solutions is still a widely adopted and popular technique in preservative conservation but the impact of these solutions is not well known. It is important to know the effect of treatments on chemical-physical and structural characteristics of the artifacts, not only for understanding the influence on present conditions but also for foreseeing the future behavior. These treatments with Romanian traditional products are compared with a commercial antifungal product, Biotin R, which is utilized as reference to control the effectiveness of Red Petroleum and Propolis. Red Petroleum and Propolis are not active against mould while Biotin R is very active. Mould attack is mostly concentrated in the painted layer, where the tempera, containing glue and egg, enhance nutrition availability for moulds. Biotin R, even if is not a real insecticide but a fungicide, was the most active product against insect attack of the three products, followed by Red Petroleum, Propolis and untreated reference. As for colour, it did not change so much after the application of Red Petroleum and Biotin R and the colour difference was almost not perceptible. On the contrary, Propolis affected the colour a lot. During the exposure at different RH, the colour changes significantly at 100% RH at equilibrium and this is mainly due to the mould attack. Red Petroleum penetrates deeply into wood, while Propolis does not penetrate and remains only on the surface. However, Red Petroleum does not interact chemically with wood substance and it is easy volatilized in oven-dry condition. On the contrary Propolis interacts chemically with wood substance and hardly volatilized, even in oven-dry condition and consequently Propolis remains where it penetrated, mostly on the surface. Treatment by immersion has impact on wood physical parameters while treatment by brushing does not have significant impact. Especially Red Petroleum has an apparent impact on moisture content (MC) due to the penetration of solution, while Propolis does not penetrate so much and remains only on surface therefore Propolis does not have so much impact as Red Petroleum. However, if the weight of the solution penetrated in wood is eliminated, there is not significant difference in MC between treated and untreated samples. Considering physical parameters, dimensional stability is an important parameter. The variation of wood moisture content causes shrinkages/swelling of the wood that polychrome layer can only partially follow. The dimension of wooden supports varied under different moisture conditioning; the painted layer cannot completely follow this deformation, and consequently a degradation and deterioration caused by detachment, occurs. That detachment affects the polychrome stratification of the panel painting and eventually the connections between the different layer compositions of the panel painting.
Resumo:
The dolphin (Tursiops truncatus) is a mammal that is adapted to life in a totally aquatic environment. Despite the popularity and even iconic status of the dolphin, our knowledge of its physiology, its unique adaptations and the effects on it of environmental stressors are limited. One approach to improve this limited understanding is the implementation of established cellular and molecular methods to provide sensitive and insightful information for dolphin biology. We initiated our studies with the analysis of wild dolphin peripheral blood leukocytes, which have the potential to be informative of the animal’s global immune status. Transcriptomic profiles from almost 200 individual samples were analyzed using a newly developed species-specific microarray to assess its value as a prognostic and diagnostic tool. Functional genomics analyses were informative of stress-induced gene expression profiles and also of geographical location specific transcriptomic signatures, determined by the interaction of genetic, disease and environmental factors. We have developed quantitative metrics to unambiguously characterize the phenotypic properties of dolphin cells in culture. These quantitative metrics can provide identifiable characteristics and baseline data which will enable identification of changes in the cells due to time in culture. We have also developed a novel protocol to isolate primary cultures from cryopreserved tissue of stranded marine mammals, establishing a tissue (and cell) biorepository, a new approach that can provide a solution to the limited availability of samples. The work presented represents the development and application of tools for the study of the biology, health and physiology of the dolphin, and establishes their relevance for future studies of the impact on the dolphin of environmental infection and stress.