930 resultados para Optimal control design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research employs solid-state actuators for delay of flow separation seen in airfoils at low Reynolds numbers. The flow control technique investigated here is aimed for a variable camber airfoil that employs two active surfaces and a single four-bar (box) mechanism as the internal structure. To reduce separation, periodic excitation to the flow around the leading edge of the airfoil is induced by a total of nine piezocomposite actuated clamped-free unimorph benders distributed in the spanwise direction. An electromechanical model is employed to design an actuator capable of high deformations at the desired frequency for lift improvement at post-stall angles. The optimum spanwise distribution of excitation for increasing lift coefficient is identified experimentally in the wind tunnel. A 3D (non-uniform) excitation distribution achieved higher lift enhancement in the post-stall region with lower power consumption when compared to the 2D (uniform) excitation distribution. A lift coefficient increase of 18.4% is achieved with the identified non-uniform excitation mode at the bender resonance frequency of 125 Hz, the flow velocity of 5 m/s and at the reduced frequency of 3.78. The maximum lift (Clmax) is increased 5.2% from the baseline. The total power consumption of the flow control technique is 639 mW(RMS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research presented here employs solid-state actuators for flow separation delay or for forced attachment of separated flow seen in airfoils at low Reynolds numbers. To reduce separation, periodic excitation to the flow around the leading edge of the airfoil is induced by Macro-Fiber Composite actuated clamped-free unimorph benders. An electromechanical model of the unimorph is briefly presented and parametric study is conducted to aid the design of a unimorph to output high deformation at a desired frequency. The optimum frequency and amplitude for lift improvement at post-stall angles are identified experimentally. Along with aerodynamic force and structural displacement measurements, helium bubble flow visualization is used to verify existing separated flow, and the attached flow induced by flow control. The lift enhancement induced by several flow control techniques is compared. A symmetric and non-uniform (3D) flow excitation results in the maximum lift enhancement at post-stall region at the lowest power consumption level. A maximum lift coefficient increase of 27.5% (in the post-stall region) is achieved at 125 Hz periodic excitation, with the 3D symmetric actuation mode at 5 m/s and the reduced frequency of 3.78. C(l,max) is increased 7.6% from the baseline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on design of digital control for wind turbines and its relation to the quality of power fed into the Brazilian grid on connecting to it a 192 MW wind farm equipped with doubly fed induction generators. PWM converters are deployed as vector controlled regulated current voltage sources for their rotors, for independent control of both active and reactive power of those generators. Both speed control and active power control strategies are analyzed, in the search for maximum efficiency of conversion of wind kinetic energy into electric power and enhanced quality of delivered power. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensors and actuators based on piezoelectric plates have shown increasing demand in the field of smart structures, including the development of actuators for cooling and fluid-pumping applications and transducers for novel energy-harvesting devices. This project involves the development of a topology optimization formulation for dynamic design of piezoelectric laminated plates aiming at piezoelectric sensors, actuators and energy-harvesting applications. It distributes piezoelectric material over a metallic plate in order to achieve a desired dynamic behavior with specified resonance frequencies, modes, and enhanced electromechanical coupling factor (EMCC). The finite element employs a piezoelectric plate based on the MITC formulation, which is reliable, efficient and avoids the shear locking problem. The topology optimization formulation is based on the PEMAP-P model combined with the RAMP model, where the design variables are the pseudo-densities that describe the amount of piezoelectric material at each finite element and its polarization sign. The design problem formulated aims at designing simultaneously an eigenshape, i.e., maximizing and minimizing vibration amplitudes at certain points of the structure in a given eigenmode, while tuning the eigenvalue to a desired value and also maximizing its EMCC, so that the energy conversion is maximized for that mode. The optimization problem is solved by using sequential linear programming. Through this formulation, a design with enhancing energy conversion in the low-frequency spectrum is obtained, by minimizing a set of first eigenvalues, enhancing their corresponding eigenshapes while maximizing their EMCCs, which can be considered an approach to the design of energy-harvesting devices. The implementation of the topology optimization algorithm and some results are presented to illustrate the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to control both the minimum size of holes and the minimum size of structural members are essential requirements in the topology optimization design process for manufacturing. This paper addresses both requirements by means of a unified approach involving mesh-independent projection techniques. An inverse projection is developed to control the minimum hole size while a standard direct projection scheme is used to control the minimum length of structural members. In addition, a heuristic scheme combining both contrasting requirements simultaneously is discussed. Two topology optimization implementations are contributed: one in which the projection (either inverse or direct) is used at each iteration; and the other in which a two-phase scheme is explored. In the first phase, the compliance minimization is carried out without any projection until convergence. In the second phase, the chosen projection scheme is applied iteratively until a solution is obtained while satisfying either the minimum member size or minimum hole size. Examples demonstrate the various features of the projection-based techniques presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Safety Instrumented Systems (SIS) are designed to prevent and / or mitigate accidents, avoiding undesirable high potential risk scenarios, assuring protection of people`s health, protecting the environment and saving costs of industrial equipment. The design of these systems require formal methods for ensuring the safety requirements, but according material published in this area, has not identified a consolidated procedure to match the task. This sense, this article introduces a formal method for diagnosis and treatment of critical faults based on Bayesian network (BN) and Petri net (PN). This approach considers diagnosis and treatment for each safety instrumented function (SIF) including hazard and operability (HAZOP) study in the equipment or system under control. It also uses BN and Behavioral Petri net (BPN) for diagnoses and decision-making and the PN for the synthesis, modeling and control to be implemented by Safety Programmable Logic Controller (PLC). An application example considering the diagnosis and treatment of critical faults is presented and illustrates the methodology proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-tools offer significant promise in a wide range of applications Such as cell Manipulation, microsurgery, and micro/nanotechnology processes. Such special micro-tools consist of multi-flexible structures actuated by two or more piezoceramic devices that must generate output displacements and forces lit different specified points of the domain and at different directions. The micro-tool Structure acts as a mechanical transformer by amplifying and changing the direction of the piezoceramics Output displacements. The design of these micro-tools involves minimization of the coupling among movements generated by various piezoceramics. To obtain enhanced micro-tool performance, the concept of multifunctional and functionally graded materials is extended by, tailoring elastic and piezoelectric properties Of the piezoceramics while simultaneously optimizing the multi-flexible structural configuration using multiphysics topology optimization. The design process considers the influence of piezoceramic property gradation and also its polarization sign. The method is implemented considering continuum material distribution with special interpolation of fictitious densities in the design domain. As examples, designs of a single piezoactuator, an XY nano-positioner actuated by two graded piezoceramics, and a micro-gripper actuated by three graded piezoceramics are considered. The results show that material gradation plays an important role to improve actuator performance, which may also lead to optimal displacements and coupling ratios with reduced amount of piezoelectric material. The present examples are limited to two-dimensional models because many of the applications for Such micro-tools are planar devices. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance optimisation of overhead conductors depends on the systematic investigation of the fretting fatigue mechanisms in the conductor/clamping system. As a consequence, a fretting fatigue rig was designed and a limited range of fatigue tests was carried out at the middle high cycle fatigue regime in order to access an exploratory S-N curve for a Grosbeak conductor, which was mounted on a mono-articulated aluminium clamping system. Subsequent to these preliminary fatigue tests, the components of the conductor/clamping system, such as ACSR conductor, upper and lower clamps, bolt and nuts, were subjected to a failure analysis procedure in order to investigate the metallurgical free variables interfering on the fatigue test results, aiming at the optimisation of the testing reproducibility. The results indicated that the rupture of the planar fracture surfaces observed in the external At strands of the conductor tested under lower bending amplitude (0.9 mm) occurred by fatigue cracking (I mm deep), followed by shear overload. The V-type fracture surfaces observed in some At strands of the conductor tested under higher bending amplitude (1.3 mm) were also produced by fatigue cracking (approximately 400 mu m deep), followed by shear overload. Shear overload fracture (45 degrees fracture surface) was also observed on the remaining At wires of the conductor tested under higher bending amplitude (1.3 mm). Additionally, the upper and lower Al-cast clamps presented microstructure-sensitive cracking, which was folowed by particle detachment and formation of abrasive debris on the clamp/conductor tribo-interface, promoting even further the fretting mechanism. The detrimental formation of abrasive debris might be inhibited by the selection of a more suitable class of as-cast At alloy for the production of clamps. Finally, the bolt/nut system showed intense degradation of the carbon steel nut (fabricated in ferritic-pearlitic carbon steel, featuring machined threads with 190 HV), with intense plastic deformation and loss of material. Proper selection of both the bolt and nut materials and the finishing processing might prevent the loss in the clamping pressure during the fretting testing. It is important to control the specification of these components (clamps, bolt and nuts) prior to the start of large scale fretting fatigue testing of the overhead conductors in order to increase the reproducibility of this assessment. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cost of a new ship design heavily depends on the principal dimensions of the ship; however, dimensions minimization often conflicts with the minimum oil outflow (in the event of an accidental spill). This study demonstrates one rational methodology for selecting the optimal dimensions and coefficients of form of tankers via the use of a genetic algorithm. Therein, a multi-objective optimization problem was formulated by using two objective attributes in the evaluation of each design, specifically, total cost and mean oil outflow. In addition, a procedure that can be used to balance the designs in terms of weight and useful space is proposed. A genetic algorithm was implemented to search for optimal design parameters and to identify the nondominated Pareto frontier. At the end of this study, three real ships are used as case studies. [DOI:10.1115/1.4002740]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper concern the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces Optimal targets for the system inputs and for Outputs that Should be dynamically implemented by the MPC controller. This paper is based oil a previous work (Comput. Chem. Eng. 2005, 29, 1089) where a nominally stable MPC was proposed for systems with the conventional control approach where only the outputs have set points. This work is also based oil the work of Gonzalez et at. (J. Process Control 2009, 19, 110) where the zone control of stable systems is studied. The new control for is obtained by defining ail extended control objective that includes input targets and zone controller the outputs. Additional decision variables are also defined to increase the set of feasible solutions to the control problem. The hard constraints resulting from the cancellation of the integrating modes Lit the end of the control horizon are softened,, and the resulting control problem is made feasible to a large class of unknown disturbances and changes of the optimizing targets. The methods are illustrated with the simulated application of the proposed,approaches to a distillation column of the oil refining industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model predictive control (MPC) is usually implemented as a control strategy where the system outputs are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by means of the selection of different weights for the output error in the control cost function. A disadvantage of this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in which the set point is an additional variable of the control problem. In this case, the set point is restricted to remain inside the output zone and an appropriate output slack variable is included in the optimisation problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired optimal input target. Simulation of a process of the oil re. ning industry illustrates the performance of the proposed strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several MPC applications implement a control strategy in which some of the system outputs are controlled within specified ranges or zones, rather than at fixed set points [J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New Jersey, 2002]. This means that these outputs will be treated as controlled variables only when the predicted future values lie outside the boundary of their corresponding zones. The zone control is usually implemented by selecting an appropriate weighting matrix for the output error in the control cost function. When an output prediction is inside its zone, the corresponding weight is zeroed, so that the controller ignores this output. When the output prediction lies outside the zone, the error weight is made equal to a specified value and the distance between the output prediction and the boundary of the zone is minimized. The main problem of this approach, as long as stability of the closed loop is concerned, is that each time an output is switched from the status of non-controlled to the status of controlled, or vice versa, a different linear controller is activated. Thus, throughout the continuous operation of the process, the control system keeps switching from one controller to another. Even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. Here, a stable M PC is developed for the zone control of open-loop stable systems. Focusing on the practical application of the proposed controller, it is assumed that in the control structure of the process system there is an upper optimization layer that defines optimal targets to the system inputs. The performance of the proposed strategy is illustrated by simulation of a subsystem of an industrial FCC system. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing need to treat effluents contaminated with phenol with advanced oxidation processes (AOPs) to minimize their impact on the environment as well as on bacteriological populations of other wastewater treatment systems. One of the most promising AOPs is the Fenton process that relies on the Fenton reaction. Nevertheless, there are no systematic studies on Fenton reactor networks. The objective of this paper is to develop a strategy for the optimal synthesis of Fenton reactor networks. The strategy is based on a superstructure optimization approach that is represented as a mixed integer non-linear programming (MINLP) model. Network superstructures with multiple Fenton reactors are optimized with the objective of minimizing the sum of capital, operation and depreciation costs of the effluent treatment system. The optimal solutions obtained provide the reactor volumes and network configuration, as well as the quantities of the reactants used in the Fenton process. Examples based on a case study show that multi-reactor networks yield decrease of up to 45% in overall costs for the treatment plant. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.