990 resultados para Naval War College (U.S.)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the second in a series of articles whose ultimate goal is the evaluation of the matrix elements (MEs) of the U(2n) generators in a multishell spin-orbit basis. This extends the existing unitary group approach to spin-dependent configuration interaction (CI) and many-body perturbation theory calculations on molecules to systems where there is a natural partitioning of the electronic orbital space. As a necessary preliminary to obtaining the U(2n) generator MEs in a multishell spin-orbit basis, we must obtain a complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The zero-shift coefficients were obtained in the first article of the series. in this article, we evaluate the nonzero shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. We then demonstrate that the one-shell versions of these coefficients may be obtained by taking the Gelfand-Tsetlin limit of the two-shell formulas. These coefficients,together with the zero-shift types, then enable us to write down formulas for the U(2n) generator matrix elements in a two-shell spin-orbit basis. Ultimately, the results of the series may be used to determine the many-electron density matrices for a partitioned system. (C) 1998 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the third and final article in a series directed toward the evaluation of the U(2n) generator matrix elements (MEs) in a multishell spin/orbit basis. Such a basis is required for many-electron systems possessing a partitioned orbital space and where spin-dependence is important. The approach taken is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. A complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis (which is appropriate to the many-electron problem) were obtained in the first and second articles of this series. Ln the first article we defined zero-shift coupling coefficients. These are proportional to the corresponding two-shell del-operator matrix elements. See P. J. Burton and and M. D. Gould, J. Chem. Phys., 104, 5112 (1996), for a discussion of the del-operator and its properties. Ln the second article of the series, the nonzero shift coupling coefficients were derived. Having obtained all the necessary coefficients, we now apply the formalism developed above to obtain the U(2n) generator MEs in a multishell spin-orbit basis. The methods used are based on the work of Gould et al. (see the above reference). (C) 1998 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A class of integrable boundary terms for the eight-state supersymmetric U model are presented by solving the graded reflection equations. The boundary model is solved by using the coordinate Bethe ansatz method and the Bethe ansatz equations are obtained. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrable eight-state supersymmetric U model is proposed, which is a fermion model with correlated single-particle and pair hoppings as well as uncorrelated triple-particle hopping. It has a gl(3/1) supersymmetry and contains one symmetry-preserving free parameter. The model is solved and the Bethe ansatz equations are obtained. [S0163-1829(98)00616-X].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general graded reflection equation algebra is proposed and the corresponding boundary quantum inverse scattering method is formulated. The formalism is applicable to all boundary lattice systems where an invertible R-matrix exists. As an application, the integrable open-boundary conditions for the q-deformed supersymmetric U model of strongly correlated electrons are investigated. The diagonal boundary K-matrices are found and a class of integrable boundary terms are determined. The boundary system is solved by means of the coordinate space Bethe ansatz technique and the Bethe ansatz equations are derived. As a sideline, it is shown that all R-matrices associated with a quantum affine superalgebra enjoy the crossing-unitarity property. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum integrability is established for the one-dimensional supersymmetric U model with boundary terms by means of the quantum inverse-scattering method. The boundary supersymmetric U chain is solved by using the coordinate-space Bethe-ansatz technique and Bethe-ansatz equations are derived. This provides us with a basis for computing the finite-size corrections to the low-lying energies in the system. [S0163-1829(98)00425-1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New classes of integrable boundary conditions for the q-deformed (or two-parameter) supersymmetric U model are presented. The boundary systems are solved by using the coordinate space Bethe ansatz technique and Bethe ansatz equations are derived. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. A sustainable pattern of participation in physical activity is important in the maintenance of health and prevention of disease, College students are in transition from an active youth to a more sedentary adult behavior pattern. Methods. We assessed self-reported physical activity and other characteristics in a sample of 2,729 male and female students (median age was 20 years) recruited from representative courses and year levels at four Australian College campuses. They were categorized as sufficiently or insufficiently active, using estimates of energy expenditure (kcal/week) derived from self-reported physical activity, Personal factors (self-efficacy, job status, enjoyment), social factors (social support from family/friends), and environmental factors (awareness of facilities, gym membership) were also assessed. Results. Forty-seven percent of females and 32% of males were insufficiently active. For females, the significant independent predictors of being insufficiently active were lower social support from family and friends, lower enjoyment of activity, and not working. For males, predictors were lower social support from family and friends, lower enjoyment of activity, and being older. Conclusions. Factors associated with physical activity participation (particularly social support from family and friends) can inform physical activity strategies directed at young adults in the college setting. (C) 1999 American Health Foundation and Academic Press.