978 resultados para Molecular approach
Resumo:
Tuberculosis is an infection caused mainly by Mycobacterium tuberculosis. A first-line antimycobacterial drug is pyrazinamide (PZA), which acts partially as a prodrug activated by a pyrazinamidase releasing the active agent, pyrazinoic acid (POA). As pyrazinoic acid presents some difficulty to cross the mycobacterial cell wall, and also the pyrazinamide-resistant strains do not express the pyrazinamidase, a set of pyrazinoic acid esters have been evaluated as antimycobacterial agents. In this work, a QSAR approach was applied to a set of forty-three pyrazinoates against M. tuberculosis ATCC 27294, using genetic algorithm function and partial least squares regression (WOLF 5.5 program). The independent variables selected were the Balaban index (I), calculated n-octanol/water partition coefficient (ClogP), van-der-Waals surface area, dipole moment, and stretching-energy contribution. The final QSAR model (N = 32, r(2) = 0.68, q(2) = 0.59, LOF = 0.25, and LSE = 0.19) was fully validated employing leave-N-out cross-validation and y-scrambling techniques. The test set (N = 11) presented an external prediction power of 73%. In conclusion, the QSAR model generated can be used as a valuable tool to optimize the activity of future pyrazinoic acid esters in the designing of new antituberculosis agents.
Resumo:
The high efficient palladium-catalyzed Suzuki-Miyaura reactions of potassium aryltrifluoroborates 3 with 5-iodo-1,3-dioxin-4-ones 2a-b in water as only solvent in the presence of n-Bu(4)NOH as base is reported. The respective 5-aryl-1,3-dioxin-4-ones 4a-n were obtained in good to excellent yields. The catalyst system provides high efficiency at low load using electronically diverse coupling partners. The obtained 2,2,6-trimethyl-5-aryl-1,3-dioxin-4-ones were transformed into corresponding alpha-aryl-beta-ketoesters 6 by reaction with an alcohol in the absence of solvent. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Molecular modeling methodologies were applied to perform preliminary studies concerning the release of active agents from potentially antichagasic and antileishmanial dendrimer prodrugs. The dendrimer was designed having myo-inositol as a core, L-malic acid as a spacer group, and hydroxymethylnitrofurazone (NFOH), 3-hydroxyflavone or quercetin, as active compounds. Each dendrimer presented a particular behavior concerning to the following investigated properties: spatial hindrance, map of electrostatic potential (MEP), and the lowest unoccupied molecular orbital energy (E(LUMO)). Additionally, the findings suggested that the carbonyl group next to the active agent seems to be the most promising ester breaking point. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sensory analysis is a precise and descriptive measuring technique to quantify human responses to stimuli. Odor, one of these stimuli, is basically the result of the interaction between a chemical stimulus and the olfactory receptor system, which can be described using a number of different dimensions and measures through different sensory tests: threshold, intensity and quality. To measure fragrance performance on the skin, these parameters are very important, but the main attribute to be evaluated is substantivity, thus the importance of the sensory scale chosen to measure perception, discriminate different intensities and determine the substantivity of the fragrance. Some studies comparing the labeled magnitude scale (LMS) with other magnitude scales and their derivations showed that the use of the LMS scale to measure fragrance intensity could semantically understand the intensity of the stimulus. Tests using this scale confirmed the applicability and efficiency of the LMS. PRACTICAL APPLICATIONS The objective of this article is to review the techniques used to measure odor and fragrance intensities applied on the skin. The review shows general sensory techniques and their goals, the newest olfactory mechanism and its contribution to sensory evaluation and which attributes should be considered to measure odor. Substantivity/retentivity or longevity can be regarded as the most important attributes if you want to measure fragrance performance on the skin. Past studies showed different scales tested to measure odor, and some of them demonstrated that the labeled magnitude scale is very suitable to measure fragrance on the skin.
Resumo:
The Suzuki-Miyaura cross-coupling reaction of a hydroxylated vinyl bromide obtained by a chemoenzymatic approach with a diverse range of potassium organotrifluoroborates has been accomplished catalyzed by Pd(PPh(3))(4) in satisfactory yields. A variety of functional groups are tolerated in the nucleophilic partner. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Histamine is an important biogenic amine, which acts with a group of four G-protein coupled receptors (GPCRs), namely H(1) to H(4) (H(1)R - H(4)R) receptors. The actions of histamine at H(4)R are related to immunological and inflammatory processes, particularly in pathophysiology of asthma, and H(4)R ligands having antagonistic properties could be helpful as antiinflammatory agents. In this work, molecular modeling and QSAR studies of a set of 30 compounds, indole and benzimidazole derivatives, as H(4)R antagonists were performed. The QSAR models were built and optimized using a genetic algorithm function and partial least squares regression (WOLF 5.5 program). The best QSAR model constructed with training set (N = 25) presented the following statistical measures: r (2) = 0.76, q (2) = 0.62, LOF = 0.15, and LSE = 0.07, and was validated using the LNO and y-randomization techniques. Four of five compounds of test set were well predicted by the selected QSAR model, which presented an external prediction power of 80%. These findings can be quite useful to aid the designing of new anti-H(4) compounds with improved biological response.
Resumo:
Semicontinuous cultures were carried out at different dilution rates (D) and light intensities (I) to determine the maximum productivity of Arthrospira platensis cultivated in helicoidal photobioreactor up to the achievement of pseudo-steady-state conditions. At I = 108 mu mol photons m(-2) s(-1), the semicontinuous regime ensured the highest values of maximum cell concentration (X(m) = 5772 +/- 113 mg L(-1)) and productivity (P(XS) = 1319 +/- 25 mg L(-1) d(-1)) at the lowest (D = 0.1 day(-1)) and the highest (D = 0.3 day(-1)) dilution rates, respectively. A kinetic model derived from that of Monod was proposed to determine the relationship between the product of light intensity to dilution rate (ID) and the cell productivity, which were shown to exert a combined influence on this parameter. This result put into evidence that pseudosteady-state conditions could be modified according to circumstances, conveniently varying one or other of the two independent variables. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Arthrospira platensis was cultivated in tubular photobioreactor using different photosynthetic photon flux densities (PPFD) and protocols of (NH(4))(2)SO(4) fed-hatch supply. Results were evaluated by variance analysis selecting maximum cell concentration (X(m)), cell productivity (P(x)), nitrogen-to-cell conversion factor (Y(X/N)) and biomass, protein and lipid contents as responses. At PPFD of 120 and 240 mu mol-photons/m(2) s, a parabolic profile of (NH(4))(2)SO(4) addition aiming at producing biomass with 7% nitrogen content ensured X(m) values (14.1 and 12.2 g/L, respectively) comparable to those obtained with NaNO(3). At PPFD of 240 mu mol-photons/m(2) s, P(x) (1.69 g/Ld) was 36% higher, although the photosynthetic efficiency (3.0%) was less than one-half that at PPFD of 120 mu mol-photons/m(2) s. Biomass was shown to be constituted by about 35% proteins and 10% lipids, without any dependence on PPFD or kind of nitrogen source. These results highlight the possible use of (NH(4))(2)SO(4) as alternative, cheap nitrogen source for A. platensis cultivation in tubular photobioreactors. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 26: 1271-1277, 2010
Resumo:
Clavulanic acid (CA) is a beta-lactam antibiotic that alone exhibits only weak antibacterial activity, but is a potent inhibitor of beta-lactamases enzymes. For this reason it is used as a therapeutic in conjunction with penicillins and cephalosporins. However, it is a well-known fact that it is unstable not only during its production phase, but also during downstream processing. Therefore, the main objective of this study was the evaluation of CA long-term stability under different conditions of pH and temperature, in the presence of variable levels of different salts, so as to suggest the best conditions to perform its simultaneous production and recovery by two-phase polymer/salt liquid-liquid extractive fermentation. To this purpose, the CA stability was investigated at different values of pH (4.0-8.0) and temperature (20-45 degrees C), and the best conditions were met at a pH 6.0-7.2 and 20 degrees C. Its stability was also investigated at 30 degrees C in the presence of NaCl, Na(2)SO(4), CaCl(2) and MgSO(4) at concentrations of 0.1 and 0.5 M in Mcllvaine buffer (pH 6.5). All salts led to increased CA instability with respect to the buffer alone, and this effect decreased in following sequence: Na(2)SO(4) > MgSO(4) > CaCl(2) > NaCl. Kinetic and thermodynamic parameters of CA degradation were calculated adopting a new model that took into consideration the equilibrium between the active and a reversibly inactivated form of CA after long-time degradation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work is the first attempt to apply aqueous two-phase mixed micellar systems (ATPMS) of the nonionic surfactant Triton X-114 and the anionic one AOT to extract clavulanic acid (CA) from broth fermented by Streptomyces clavuligerus. Cloud points were determined in McIlvane buffer pH 6.5 with or without NaCl, and diagram phases/coexistence curves were constructed. CA partition was investigated following a 2(4)-full factorial design in which AOT (0.022, 0.033 and 0.044% w/w), Triton X-114 (1.0, 3.0 and 5.0% w/w) and NaCl (0, 2.85 and 5.70% w/w) concentrations and temperature (24,26 and 28 degrees C) were selected as independent variables, and CA partition coefficient (K(CA)) and yield in the top phase (eta(CA)) as responses. CA partitioned always to the top, micelle-poor phase. The regression analysis pointed out that NaCl concentration and interaction between temperature and Triton X-114 concentration had statistically significant effects on K(CA), while eta(CA) was mainly influenced by temperature, Triton X-114 concentration and their interaction. Different ATPMS compositions were then needed to maximize these responses, specifically 0.022% (w/w) AOT, 5% (w/w) Triton X-114 for K(CA) (2.08), and 0.044% (w/w) AOT, 1% (w/w) Triton X-114 for eta(CA) (98.7%), both at 24 degrees C without NaCl. Since at 0.022% (w/w) AOT, 1% (w/w) Triton X-114 and 28 degrees C without NaCl the system was able to ensure satisfactory intermediate results (K(CA) = 1.48; eta(CA) = 86.3%), these conditions were selected as the best ones. These preliminary results are of concern for possible industrial application, because CA partition to the dilute phase can simplify the subsequent purification protocol. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was the design of a set of benzofuroxan derivatives as antimicrobial agents exploring the physicochemical properties of the related substituents. Topliss` decision tree approach was applied to select the substituent groups. Hierarchical cluster analysis was also performed to emphasize natural clusters and patterns. The compounds were obtained using two synthetic approaches for reducing the synthetic steps as well as improving the yield. The minimal inhibitory concentration method was employed to evaluate the activity against multidrug-resistant Staphylococcus aureus strains. The most active compound was 4-nitro-3-(trifluoromethyl)[N`-(benzofuroxan-5-yl) methylene] benzhydrazide (MIC range 12.7-11.4 mu g/mL), pointing out that the antimicrobial activity was indeed influenced by the hydrophobic and electron-withdrawing property of the substituent groups 3-CF(3) and 4-NO(2), respectively. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, chemometric methods are reported as potential tools for monitoring the authenticity of Brazilian ultra-high temperature (UHT) milk processed in industrial plants located in different regions of the country. A total of 100 samples were submitted to the qualitative analysis of adulterants such as starch, chlorine, formal. hydrogen peroxide and urine. Except for starch, all the samples reported, at least, the presence of one adulterant. The use of chemometric methodologies such as the Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) enabled the verification of the occurrence of certain adulterations in specific regions. The proposed multivariate approaches may allow the sanitary agency authorities to optimise materials, human and financial resources, as they associate the occurrence of adulterations to the geographical location of the industrial plants. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Lactic acid bacteria ( LAB) are currently used by food industries because of their ability to produce metabolites with antimicrobial activity against gram-positive pathogens and spoilage microorganisms. The objectives of this study were to identify naturally occurring bacteriocinogenic or bacteriocinogenic-like LAB in raw milk and soft cheese and to detect the presence of nisin-coding genes in cultures identified as Lactococcus lactis. Lactic acid bacteria cultures were isolated from 389 raw milk and soft cheese samples and were later characterized for the production of antimicrobial substances against Listeria monocytogenes. Of these, 58 (14.9%) LAB cultures were identified as antagonistic; the nature of this antagonistic activity was then characterized via enzymatic tests to confirm the proteinaceous nature of the antimicrobial substances. In addition, 20 of these antagonistic cultures were selected and submitted to genetic sequencing; they were identified as Lactobacillus plantarum (n = 2) and Lactococcus lactis ssp. lactis (n = 18). Nisin genes were identified by polymerase chain reaction in 7 of these cultures. The identified bacteriocinogenic and bacteriocinogenic-like cultures were highly variable concerning the production and activity of antimicrobial substances, even when they were genetically similar. The obtained results indicated the need for molecular and phenotypic methodologies to properly characterize bacteriocinogenic LAB, as well as the potential use of these cultures as tools to provide food safety.
Resumo:
Nitroheterocyclic compounds (NC) were candidate drugs proposed for Chagas disease chemotherapy. In this study, we investigated the complexation of hydroxymethylnitrofurazone (NFOH), a potential antichagasic compound, with alpha-cyclodextrin (alpha-CD), beta-cyclodextrin (beta-CD), Hydroxypropyl-beta-cyclodextrin (HP-beta-CD), Dimethyl-beta-cyclodextrin (DM-beta-CD) and gamma-cyclodextrin (gamma-CD) by fluorescence spectroscopy and molecular modeling studies. Hildebrand-Benesi equation was used to calculate the formation constants of NFOH with cyclodextrins based on the fluorescence differences in the CDs solution. The complexing capacity of NFOH with different CDs was compared through the results of association constant according to the following order: DM-beta-CD > beta-CD > alpha-CD > HP-beta-CD > gamma-CD. Molecular modeling studies give support for the experimental assignments, in favor of the formation of an inclusion complex between cyclodextrins with NFOH. This is an important study to investigate the effects of different kinds of cyclodextrins on the inclusion complex formation with NFOH and to better characterize a potential formulations to be used as therapeutic options for the oral treatment of Chagas disease.
Resumo:
Molecular modi. cation is a quite promising strategy in the design and development of drug analogs with better bioavailability, higher intrinsic activity and less toxicity. In the search of new leads with potential antimicrobial activity, a new series of 14 4-substituted [N`-(benzofuroxan-5-yl) methylene] benzohydrazides, nifuroxazide derivatives, were synthesized and tested against standard and multidrug-resistant Staphylococcus aureus strains. The selection of the substituent groups was based on physicochemical properties, such as hydrophobicity and electronic effect. These properties were also evaluated through the lipophilic and electrostatic potential maps, respectively, considering the compounds with better biological pro. le. Twelve compounds exhibited similar bacteriostatic activity against standard and multidrug-resistant strains. The most active compound was the 4-CF(3) substituted derivative, which presented a minimum inhibitory concentration (MIC) value of 14.6-13.1 mu g/mL, and a ClogP value of 1.87. The results highlight the benzofuroxan derivatives as potential leads for designing new future antimicrobial drug candidates. (C) 2009 Elsevier Ltd. All rights reserved.