995 resultados para Microwave absorbing property


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A physically open, but electrically shielded, microwave open oven can be produced by virtue of the evanescent fields in a waveguide below cutoff. The below cutoff heating chamber is fed by a transverse magnetic resonance established in a dielectric-filled section of the waveguide exploiting continuity of normal electric flux. In order to optimize the fields and the performance of the oven, a thin layer of a dielectric material with higher permittivity is inserted at the interface. Analysis and synthesis of an optimized open oven predicts field enhancement in the heating chamber up to 9.4 dB. Results from experimental testing on two fabricated prototypes are in agreement with the simulated predictions, and demonstrate an up to tenfold improvement in the heating performance. The open-ended oven allows for simultaneous precision alignment, testing, and efficient curing of microelectronic devices, significantly increasing productivity gains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thawing of a frozen food product in a domestic microwave oven is numerically simulated using a coupled solver approach. The approach consists of a dedicated electromagnetic FDTD solver and a closely coupled UFVM multi-physics package. Two overlapping numerical meshes are defined; the food material and container were meshed for heat transfer and phase change solution, whilst the microwave oven cavity and waveguide were meshed for the microwave irradiation. The two solution domains were linked using a cross-mapping routine. This approach allowed the rotation of the food load to be captured. Power densities obtained on the structured FDTD mesh were interpolated onto the UFVM mesh for each timestep/turntable position. The UFVM solver utilised the power density data to advance the temperature and phase distribution solution. The temperature-dependant dielectric and thermo-physical properties of the food load were updated prior to revising the electromagnetic solution. Changes in thermal/electric properties associated with the phase transition were fully accounted for as well as heat losses from product to cavity. Two scenarios were investigated: a centric and eccentric placement on the turntable. Developing temperature fields predicted by the numerical solution are validated against experimentally obtained data. Presented results indicate the feasibility of fully coupled simulations of the microwave heating of a frozen product. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparison of the performance of a conventional convection oven system with a dual-section microwave system for curing thermosetting polymer encapsulant materials has been performed numerically. A numerical model capable of analysing both the convection and microwave cure processes has been developed and is breifly outliines. The model is used to analyse the curing of a commercially available encapsulant material using both systems. Results obtained from numerical solutions are presented, confirming that the VFM system enables the cure process to be carried out far more rapidly than with the convection oven system. This capability stems from the fundamental heating processes involved, namely that microwave processing enables the heating rate to be varied independently of the material temperature. Variations in cure times, curing rates, maximum temperatures and residual stresses between the processes are fully discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curing of a thermosetting polymer materials utilized on micro-electronics packaging applications can be performed using microwave systems. The use of microwave energy enables the cure process to be completed more rapidly than with alternative approaches due to the ability to heat volumetrically. Furthermore, advanced dual-section microwave systems enable curing of individual components on a chip-on-board assembly. The dielectric properties of thermosetting polymer materials, commonly used in microelectronics packaging applications, vary significantly with temperature and degree of cure. The heating rate within a material subjected to an electric field is primarily dependant on the dielectric loss properties of the material itself. This article examines the variation in dielectric properties of a commercially available encapsulant paste with frequency and temperature and the resulting influence on the cure process. The 'FAMOBS' dual section microwave system and its application to microelectronics manufacture are described. The measurement of the dielectric properties of 'Henkel EO1080' encapsulant paste uses a commercially available 'dielectric probe kit' and is described in this paper. The FAMOBS heating system is used to encapsulate a small op-amp chip. A numerical model formulated to assess the cure process in thermosetting polymer materials under microwave heating is outlined. Numerical results showing that the microwave processing systems is capable of rapidly and evenly curing thermosetting polymer materials are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curing of encapsulant material in a simplified microelectronics package using an open oven Variable Frequency Microwave (VFM) system is numerically simulated using a coupled solver approach. A numerical framework capable of simulating electromagnetic field distribution within the oven system, plus heat transfer, cure rate, degree of cure and thermally induced stresses within the encapsulant material is presented. The discrete physical processes have been integrated into a fully coupled solution, enabling usefully accurate results to be generated. Numerical results showing the heating and curing of the encapsulant material have been obtained and are presented in this contribution. The requirement to capture inter-process coupling and the variation in dielectric and thermophysical material properties is discussed and illustrated with simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel open waveguide cavity resonator is presented for the combined variable frequency microwave curing of bumps, underfills and encapsulants, as well as the alignment of devices for fast flip-chip assembly, direct chip attach (DCA) or wafer-scale level packaging (WSLP). This technology achieves radio frequency (RF) curing of adhesives used in microelectronics, optoelectronics and medical devices with potential simultaneous micron-scale alignment accuracy and bonding of devices. In principle, the open oven cavity can be fitted directly onto a flip-chip or wafer scale bonder and, as such, will allow for the bonding of devices through localised heating thus reducing the risk to thermally sensitive devices. Variable frequency microwave (VFM) heating and curing of an idealised polymer load is numerically simulated using a multi-physics approach. Electro-magnetic fields within a novel open ended microwave oven developed for use in micro-electronics manufacturing applications are solved using a dedicated Yee scheme finite-difference time-domain (FDTD) solver. Temperature distribution, degree of cure and thermal stresses are analysed using an Unstructured Finite Volume method (UFVM) multi-physics package. The polymer load was meshed for thermophysical analysis, whilst the microwave cavity - encompassing the polymer load - was meshed for microwave irradiation. The two solution domains are linked using a cross mapping routine. The principle of heating using the evanescent fringing fields within the open-end of the cavity is demonstrated. A closed loop feedback routine is established allowing the temperature within a lossy sample to be controlled. A distribution of the temperature within the lossy sample is obtained by using a thermal imaging camera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave processing of materials is numerically simulated using a coupled solver approach. Microwave heating is a complex coupled process due to the variation in dielectric properties during heating. The effects of heating an object in a electromagnetic field directly influence the manner in which it interacts with the field. Simplifying assumptions and empirical solutions do not capture the fundamental physics involved and, in general, do not provide usefully accurate solutions in a number of practical problems. In order to capture the underlying processes involved in microwave heating, the problem must be looked at in a holistic manner rather than a number of discrete processes. This contribution outlines a coupled-solver multiphysics analysis approach to the solution of practical microwave heating problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dual-section variable frequency microwave systems enable rapid, controllable heating of materials within an individual surface mount component in a chip-on=board assembly. The ability to process devices individually allows components with disparate processing requirements to be mounted on the same assembly. The temperature profile induced by the microwave system can be specifically tailored to the needs of the component, allowing optimisation and degree of cure whilst minimising thermomechanical stresses. This paper presents a review of dual-section microwave technology and its application to curing of thermosetting polymer materials in microelectronics applications. Curing processes using both conventional and microwave technologies are assessed and compared. Results indicate that dual-section microwave systems are able to cure individual surface mount packages in a significantly shorter time, at the expense of an increase in thermomechanical stresses and a greater variation in degree of cure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intriguing question, which until recently had not been directly explored by the courts, is the extent to which English law recognises body parts and products of the human body as property capable of ownership. Although the common law currently recognises no general property in a dead body (and only limited possessory rights in respect of it), this apparent “no-property rule” provides no justification, it is submitted, for denying proprietary status to parts or products of a living human body. The recent decision of the Court of Appeal in Yearworth v. North Bristol NHS Trust ([2009] EWCA Civ 37) lends strong support to the view that genetic material (as the product of a living human body) is capable of ownership, at least in the context of a claim in the tort of negligence and bailment. This article examines the various issues by reference to both English and Commonwealth authority.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comments on the Chancery Division decision in Jackson v JH Watson Property Investment Ltd on whether a landlord was liable in nuisance to a long leaseholder in respect of damage caused to the demised property by a building defect which pre-dated the grant of the lease or whether the principle of caveat lessee applied. Considers whether the defect amounted to "disrepair" within the meaning of the landlord's repairing covenant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable Frequency Microwave (VFM) processing of heterogeneous chip-on-board assemblies is assessed using a multiphysics modelling approach. The Frequency Agile Microwave Oven Bonding System (FAMOBS) is capable of rapidly processing individual packages on a Chip-On-Board (COB) assembly. This enables each package to be processed in an optimal manner, with temperature ramp rate, maximum temperature and process duration tailored to the specific package, a significant benefit in assemblies containing disparate package types. Such heterogeneous assemblies may contain components such as large power modules alongside smaller modules containing low thermal budget materials with highly disparate processing requirements. The analysis of two disparate packages has been assessed numerically to determine the applicability of the dual section microwave system to curing heterogeneous devices and to determine the influence of differing processing requirements of optimal process parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermosetting polymer materials are widely utilised in modern microelectronics packaging technology. These materials are used for a number of functions, such as for device bonding, for structural support applications and for physical protection of semiconductor dies. Typically, convection heating systems are used to raise the temperature of the materials to expedite the polymerisation process. The convection cure process has a number of drawbacks including process durations generally in excess of 1 hour and the requirement to heat the entire printed circuit board assembly, inducing thermomechanical stresses which effect device reliability. Microwave energy is able to raise the temperature of materials in a rapid, controlled manner. As the microwave energy penetrates into the polymer materials, the heating can be considered volumetric – i.e. the rate of heating is approximately constant throughout the material. This enables a maximal heating rate far greater than is available with convection oven systems which only raise the surface temperature of the polymer material and rely on thermal conductivity to transfer heat energy into the bulk. The high heating rate, combined with the ability to vary the operating power of the microwave system, enables the extremely rapid cure processes. Microwave curing of a commercially available encapsulation material has been studied experimentally and through use of numerical modelling techniques. The material assessed is Henkel EO-1080, a single component thermosetting epoxy. The producer has suggested three typical convection oven cure options for EO1080: 20 min at 150C or 90 min at 140C or 120 min at 110C. Rapid curing of materials of this type using advanced microwave systems, such as the FAMOBS system [1], is of great interest to microelectronics system manufacturers as it has the potential to reduce manufacturing costs, increase device reliability and enables new device designs. Experimental analysis has demonstrated that, in a realistic chip-on-board encapsulation scenario, the polymer material can be fully cured in approximately one minute. This corresponds to a reduction in cure time of approximately 95 percent relative to the convection oven process. Numerical assessment of the process [2] also suggests that cure times of approximately 70 seconds are feasible whilst indicating that the decrease in process duration comes at the expense of variation in degree of cure within the polymer.