994 resultados para Methanol oxidation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyelectrolyte complexes (PECs) of chitosan and phosphotungstic acid have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Phosphotungstic acid can be fixed within PECs membranes through strong electrostatic interactions, which avoids the decrease of conductivity caused by the dissolving of phosphotungstic acid as previously reported. Scanning electron microscopy (SEM) shows that the PECs membranes are homogeneous and dense. Fourier transform infrared spectroscopy (FTIR) demonstrates that hydrogen bonding is formed between chitosan and phosphotungstic acid. Thermogravimetric analysis (TGA) shows that the PECs membranes have good thermal stability up to 210 degrees C. The PECs membranes exhibit good swelling properties and low methanol permeability (P, 3.3 x 10(-7) cm(2) s(-1)). Proton conductivity (sigma) of the PECs membranes increases at elevated temperature, reaching the value of 0.024 S cm(-1) at 80 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-modified Nafion (R) membrane was prepared by casting proton-conducting polyelectrolyte complexes on the surface of Nafion (R). The casting layer is homogeneous and its thickness is about 900 nm. The proton conductivity of modified Nafion (R) is slightly lower than that of plain Nafion (R); however, its methanol permeability is 41% lower than that of plain Nafion (R). The single cells with modified Nafion (R) exhibit higher open circuit voltage (OCV = 0.73 V) and maximal power density (P-max = 58 mW cm(-2)) than the single cells with plain Nafion (R) (OCV = 0.67 V, P x = 49 mW cm-2). It is a simple, efficient, cost-effective approach to modifying Nafion (R) by casting proton-conducting materials on the surface of Nafion (R).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is reported for the first time that the slow electrochemical kinetics process for the electro-oxidation of ethanol can be promoted by changing the electrochemical environment. The electro-oxidation of ethanol at a Pt electrode in the presence of Eu3+ cations was studied and an enhancement effect was exhibited. Cyclic voltammetry experiment results showed that the peak current density for the electro-oxidation of ethanol was increased in the presence of EU3+ in the ethanol solution. A preliminary discussion of the mechanism of the enhancement effect is given. This is based on a CO stripping experiment, which shows that either the onset potential or the peak potential of CO oxidation is shifted negatively after adding Eu3+ to the solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trigonal phase of tellurium (t-Te) nanorods with tapered ends have been synthesized through spontaneous oxidation of NaHTe by dissolved oxygen at room temperature. Utilization of sodium dodecyl benzenesulfonate was found to help to obtain high-quality nanorods. The product was characterized by X-ray diffraction and Transmission electron microscopy. In addition, the possible nucleation and growth mechanism of the t-Te nanorods was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption behavior of methanol, ethanol, n-butanol, n-hexanol and n-octanol on mica surface was investigated by atomic force microscopy. All these alcohols have formed homogeneous films with different characteristics. Upright standing bilayer structure was formed on methanol adsorbed mica surface. For ethanol, bilayer structure and monolayer one were simultaneously formed, while for n-butanol and n-hexanol, rough films were observed. What was formed for n-octanol? Close-packed flat film was observed on n-octanol adsorbed mica substrate, the film was assumed to be a tilted monolayer. The possible adsorption model for each alcohol molecule was proposed according to its adsorption behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deliberate tailoring of nanostructured metallic catalysts at the monolayer-level is an ongoing challenge and could lead to new electronic and catalytic properties, since surface-catalyzed reactions are extremely sensitive to the atomic-level details of the catalytic surface. In this article, we present a novel electrochemical strategy to nanoparticle-based catalyst design using the recently developed underpotential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt2+ yielded a uniform Pt layer on colloid gold surfaces. The ultrathin (nominally monolayer-level) Pt coating of the novel nanostructured particles was confirmed by cyclic voltammetry and X-ray photoelectron spectra (XPS). The present results demonstrate that ultrathin Pt coating effects efficiently and behaves as the nanostructured monometallic Pt for electrocatalytic oxygen reduction, and also shows size-dependent, tunable electrocatalytic ability. The as-prepared ultrathin Pt-coated Au nanoparticle monolayer electrodes reduce O-2 predominantly by four electrons to H2O, as confirmed by the rotating ring-disk electrode (RRDE) technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline-camphorsulfonic acid (PAN-CSA) composite film on platinum electrode surface has been synthesized via the electrochemical polymerization of aniline in the presence of camphorsulfonic acid (CSA). It was found that the doping of polyaniline (PAN) with CSA extends the electroactivity of PAN in neutral and even in alkaline media. The PAN-CSA composite film coated platinum electrodes are shown to be good electrocatalytic surfaces for the oxidation of ascorbic acid (AA) in phosphate buffer solution (PBS) of pH 7.0. The anodic peak potential of AA shifts from 0.63 V at the bare platinum electrode to 0.34 V at the PAN-CSA composite modified platinum electrode with a greatly enhanced current response. A linear calibration graph is obtained over the AA concentration range of 5-50 mM using cyclic voltammetry. The kinetics of the catalytic reaction are investigated using rotating disk electrode voltammetry and chronoamperometry. The results are explained using the theory of electrocatalytic reactions at chemically modified electrodes. The PAN-CSA composite on the electrode surface shows good reproducibility and stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 0.05 mol/L phosphate buffer solution (pH 7.0), carbon nanotubes modified electrode exhibits rapid response, strong catalytic activity with high stability toward the electrochemical oxidation of catechol. The electrochemical behavior of catechol on both the multi-walled and single-walled carbon nanotubes modified electrode was investigated. The experimental conditions, such as pH of the solution and scan rate were optimized. The currents (measured by constant potential amperometry) increase linearly with the concentrations of catechol in the range of 2.0 x 10(-5) - 1.2 x 10(-3) mol/L. Moreover, at the multi-walled carbon nanotubes modified electrode the electrochemical responses of catechol and ascorbic acid can be separated clearly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel room temperature ionic liquid (RTIL) has been prepared containing a cyclic hexaalkylguanidinium cation. The selective oxidation of a series of substituted benzyl alcohols has been carried out in it, with sodium hypochlorite as the oxidant. The RTIL acts as both phase transfer catalyst (PTC) and solvent. The ionic liquid could be recycled after extraction of the benzaldehyde product with ether.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C catalysts could be controlled with controlling the preparation conditions. The effect of the average sizes of the Pt particles in the Pt/C catalysts obtained with this method on the electrocatalytical activity of the oxidation of methanol was investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cobalt hexacyanoferrate film (CoHCF) was deposited on the surface of a glassy carbon (GC) electrode with a potential cycling procedure in the presence and absence of the cationic surfactant, cetyl trimethylammonium bromide (CTAB), to form CoHCF modified GC (CoHCF/GC) electrode. It was found that CTAB would affect the growth of the CoHCF film, the electrochemical behavior of the CoHCF film and the electrocatalytic activity of the CoHCF/GC electrode towards the electrochemical oxidation of dopamine (DA). The reasons of the electrochemical behavior of CoHCF/GC electrode influenced by CTAB were investigated using FTIR and scanning electron microscope (SEM) techniques. The apparent rate constant of electrocatalytic oxidation of DA catalyzed by CoHCF was determined using the rotating disk electrode measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanowires, nanorods and nanoparticles through modulating the ratio of water to methanol have been synthesized by using a mild and simple solution method. The as-prepared ZnO nanostructures have been characterized by atomic force microscopy and X-ray photoelectron spectroscopy. With the increase of the ratio of water to methanol, the morphology of ZnO nanostructures varied form denser nanowires, to sparse nanowires, to nanorods, and then to nanoparticles. The ratio of water to methanol is supposed to play an important role in the formation of ZnO nanostructures. The mechanism of formation is related to the chemical potential, which is simply proportional to their surface ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic force microscope (AFM)-based scanned probe oxidation (SPO) nanolithography has been carried out on an octadecyl-terminated Si(111) surface to create dot-array patterns under ambient conditions in contact mode. The kinetics investigations indicate that this SPO process involves three stages. Within the steadily growing stage, the height of oxide dots increases logarithmically with pulse duration and linearly with pulse voltage. The lateral size of oxide dots tends to vary in a similar way. Our experiments show that a direct-log kinetic model is more applicable than a power-of-time law model for the SPO process on an alkylated silicon in demonstrating the dependence of oxide thickness on voltage exposure time within a relatively wide range. In contrast with the SPO on the octodecysilated SiO2/silicon surface, this process can be realized by a lower voltage with a shorter exposure time, which will be of great benefit to the fabrication of integrated nanometer-sized electronic devices on silicon-based substrates. This study demonstrates that the alkylated silicon is a new promising substrate material for silicon-based nanolithography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanned probe oxidation (SPO) nanolithography has been performed with an atomic force microscope (AFM) on an octadecyl-terminated silicon (111) surface to create protuberant oxide line patterns under ambient conditions in contact mode. The kinetic investigations of this SPO process indicate that the oxide line height increases linearly with applied voltage and decreases logarithmically with writing, speed. The oxide line width also tends to vary with the same law. The ambient humidity and the AFM tip state can remarkably influence this process, too. As compared with traditional octadecylsilated SiO2/Si substrate, such a substrate can guarantee the SPO with an obviously lowered voltage and a greatly increased writing speed. This study demonstrates that such alkylated silicon is a promising silicon-based substrate material for SPO nanolithography.