884 resultados para Mean squared error


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Technology changes rapidly over years providing continuously more options for computer alternatives and making life easier for economic, intra-relation or any other transactions. However, the introduction of new technology “pushes” old Information and Communication Technology (ICT) products to non-use. E-waste is defined as the quantities of ICT products which are not in use and is bivariate function of the sold quantities, and the probability that specific computers quantity will be regarded as obsolete. In this paper, an e-waste generation model is presented, which is applied to the following regions: Western and Eastern Europe, Asia/Pacific, Japan/Australia/New Zealand, North and South America. Furthermore, cumulative computer sales were retrieved for selected countries of the regions so as to compute obsolete computer quantities. In order to provide robust results for the forecasted quantities, a selection of forecasting models, namely (i) Bass, (ii) Gompertz, (iii) Logistic, (iv) Trend model, (v) Level model, (vi) AutoRegressive Moving Average (ARMA), and (vii) Exponential Smoothing were applied, depicting for each country that model which would provide better results in terms of minimum error indices (Mean Absolute Error and Mean Square Error) for the in-sample estimation. As new technology does not diffuse in all the regions of the world with the same speed due to different socio-economic factors, the lifespan distribution, which provides the probability of a certain quantity of computers to be considered as obsolete, is not adequately modeled in the literature. The time horizon for the forecasted quantities is 2014-2030, while the results show a very sharp increase in the USA and United Kingdom, due to the fact of decreasing computer lifespan and increasing sales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heat sinks are widely used for cooling electronic devices and systems. Their thermal performance is usually determined by the material, shape, and size of the heat sink. With the assistance of computational fluid dynamics (CFD) and surrogate-based optimization, heat sinks can be designed and optimized to achieve a high level of performance. In this paper, the design and optimization of a plate-fin-type heat sink cooled by impingement jet is presented. The flow and thermal fields are simulated using the CFD simulation; the thermal resistance of the heat sink is then estimated. A Kriging surrogate model is developed to approximate the objective function (thermal resistance) as a function of design variables. Surrogate-based optimization is implemented by adaptively adding infill points based on an integrated strategy of the minimum value, the maximum mean square error approach, and the expected improvement approaches. The results show the influence of design variables on the thermal resistance and give the optimal heat sink with lowest thermal resistance for given jet impingement conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To analyze differences in the variables associated with severity of suicidal intent and in the main factors associated with intent when comparing younger and older adults. DESIGN: Observational, descriptive cross-sectional study. SETTING: Four general hospitals in Madrid, Spain. PARTICIPANTS: Eight hundred seventy suicide attempts by 793 subjects split into two groups: 18-54 year olds and subjects older than 55 years. MEASUREMENTS: The authors tested the factorial latent structure of suicidal intent through multigroup confirmatory factor analysis for categorical outcomes and performed statistical tests of invariance across age groups using the DIFFTEST procedure. Then, they tested a multiple indicators-multiple causes (MIMIC) model including different covariates regressed on the latent factor "intent" and performed two separate MIMIC models for younger and older adults to test for differential patterns. RESULTS: Older adults had higher suicidal intent than younger adults (z = 2.63, p = 0.009). The final model for the whole sample showed a relationship of intent with previous attempts, support, mood disorder, personality disorder, substance-related disorder, and schizophrenia and other psychotic disorders. The model showed an adequate fit (chi²[12] = 22.23, p = 0.035; comparative fit index = 0.986; Tucker-Lewis index = 0.980; root mean square error of approximation = 0.031; weighted root mean square residual = 0.727). All covariates had significant weights in the younger group, but in the older group, only previous attempts and mood disorders were significantly related to intent severity. CONCLUSIONS: The pattern of variables associated with suicidal intent varies with age. Recognition, and treatment of geriatric depression may be the most effective measure to prevent suicidal behavior in older adults.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Setting out from the database of Operophtera brumata, L. in between 1973 and 2000 due to the Light Trap Network in Hungary, we introduce a simple theta-logistic population dynamical model based on endogenous and exogenous factors, only. We create an indicator set from which we can choose some elements with which we can improve the fitting results the most effectively. Than we extend the basic simple model with additive climatic factors. The parameter optimization is based on the minimized root mean square error. The best model is chosen according to the Akaike Information Criterion. Finally we run the calibrated extended model with daily outputs of the regional climate model RegCM3.1, regarding 1961-1990 as reference period and 2021-2050 with 2071-2100 as future predictions. The results of the three time intervals are fitted with Beta distributions and compared statistically. The expected changes are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traffic incidents are a major source of traffic congestion on freeways. Freeway traffic diversion using pre-planned alternate routes has been used as a strategy to reduce traffic delays due to major traffic incidents. However, it is not always beneficial to divert traffic when an incident occurs. Route diversion may adversely impact traffic on the alternate routes and may not result in an overall benefit. This dissertation research attempts to apply Artificial Neural Network (ANN) and Support Vector Regression (SVR) techniques to predict the percent of delay reduction from route diversion to help determine whether traffic should be diverted under given conditions. The DYNASMART-P mesoscopic traffic simulation model was applied to generate simulated data that were used to develop the ANN and SVR models. A sample network that comes with the DYNASMART-P package was used as the base simulation network. A combination of different levels of incident duration, capacity lost, percent of drivers diverted, VMS (variable message sign) messaging duration, and network congestion was simulated to represent different incident scenarios. The resulting percent of delay reduction, average speed, and queue length from each scenario were extracted from the simulation output. The ANN and SVR models were then calibrated for percent of delay reduction as a function of all of the simulated input and output variables. The results show that both the calibrated ANN and SVR models, when applied to the same location used to generate the calibration data, were able to predict delay reduction with a relatively high accuracy in terms of mean square error (MSE) and regression correlation. It was also found that the performance of the ANN model was superior to that of the SVR model. Likewise, when the models were applied to a new location, only the ANN model could produce comparatively good delay reduction predictions under high network congestion level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation introduces a new system for handwritten text recognition based on an improved neural network design. Most of the existing neural networks treat mean square error function as the standard error function. The system as proposed in this dissertation utilizes the mean quartic error function, where the third and fourth derivatives are non-zero. Consequently, many improvements on the training methods were achieved. The training results are carefully assessed before and after the update. To evaluate the performance of a training system, there are three essential factors to be considered, and they are from high to low importance priority: (1) error rate on testing set, (2) processing time needed to recognize a segmented character and (3) the total training time and subsequently the total testing time. It is observed that bounded training methods accelerate the training process, while semi-third order training methods, next-minimal training methods, and preprocessing operations reduce the error rate on the testing set. Empirical observations suggest that two combinations of training methods are needed for different case character recognition. Since character segmentation is required for word and sentence recognition, this dissertation provides also an effective rule-based segmentation method, which is different from the conventional adaptive segmentation methods. Dictionary-based correction is utilized to correct mistakes resulting from the recognition and segmentation phases. The integration of the segmentation methods with the handwritten character recognition algorithm yielded an accuracy of 92% for lower case characters and 97% for upper case characters. In the testing phase, the database consists of 20,000 handwritten characters, with 10,000 for each case. The testing phase on the recognition 10,000 handwritten characters required 8.5 seconds in processing time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research addresses the problem of cost estimation for product development in engineer-to-order (ETO) operations. An ETO operation starts the product development process with a product specification and ends with delivery of a rather complicated, highly customized product. ETO operations are practiced in various industries such as engineering tooling, factory plants, industrial boilers, pressure vessels, shipbuilding, bridges and buildings. ETO views each product as a delivery item in an industrial project and needs to make an accurate estimation of its development cost at the bidding and/or planning stage before any design or manufacturing activity starts. ^ Many ETO practitioners rely on an ad hoc approach to cost estimation, with use of past projects as reference, adapting them to the new requirements. This process is often carried out on a case-by-case basis and in a non-procedural fashion, thus limiting its applicability to other industry domains and transferability to other estimators. In addition to being time consuming, this approach usually does not lead to an accurate cost estimate, which varies from 30% to 50%. ^ This research proposes a generic cost modeling methodology for application in ETO operations across various industry domains. Using the proposed methodology, a cost estimator will be able to develop a cost estimation model for use in a chosen ETO industry in a more expeditious, systematic and accurate manner. ^ The development of the proposed methodology was carried out by following the meta-methodology as outlined by Thomann. Deploying the methodology, cost estimation models were created in two industry domains (building construction and the steel milling equipment manufacturing). The models are then applied to real cases; the cost estimates are significantly more accurate than the actual estimates, with mean absolute error rate of 17.3%. ^ This research fills an important need of quick and accurate cost estimation across various ETO industries. It differs from existing approaches to the problem in that a methodology is developed for use to quickly customize a cost estimation model for a chosen application domain. In addition to more accurate estimation, the major contributions are in its transferability to other users and applicability to different ETO operations. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interferometric synthetic aperture radar (InSAR) techniques can successfully detect phase variations related to the water level changes in wetlands and produce spatially detailed high-resolution maps of water level changes. Despite the vast details, the usefulness of the wetland InSAR observations is rather limited, because hydrologists and water resources managers need information on absolute water level values and not on relative water level changes. We present an InSAR technique called Small Temporal Baseline Subset (STBAS) for monitoring absolute water level time series using radar interferograms acquired successively over wetlands. The method uses stage (water level) observation for calibrating the relative InSAR observations and tying them to the stage's vertical datum. We tested the STBAS technique with two-year long Radarsat-1 data acquired during 2006–2008 over the Water Conservation Area 1 (WCA1) in the Everglades wetlands, south Florida (USA). The InSAR-derived water level data were calibrated using 13 stage stations located in the study area to generate 28 successive high spatial resolution maps (50 m pixel resolution) of absolute water levels. We evaluate the quality of the STBAS technique using a root mean square error (RMSE) criterion of the difference between InSAR observations and stage measurements. The average RMSE is 6.6 cm, which provides an uncertainty estimation of the STBAS technique to monitor absolute water levels. About half of the uncertainties are attributed to the accuracy of the InSAR technique to detect relative water levels. The other half reflects uncertainties derived from tying the relative levels to the stage stations' datum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Florida Bay is a highly dynamic estuary that exhibits wide natural fluctuations in salinity due to changes in the balance of precipitation, evaporation and freshwater runoff from the mainland. Rapid and large-scale modification of freshwater flow and construction of transportation conduits throughout the Florida Keys during the late nineteenth and twentieth centuries reshaped water circulation and salinity patterns across the ecosystem. In order to determine long-term patterns in salinity variation across the Florida Bay estuary, we used a diatom-based salinity transfer function to infer salinity within 3.27 ppt root mean square error of prediction from diatom assemblages from four ~130 year old sediment records. Sites were distributed along a gradient of exposure to anthropogenic shifts in the watershed and salinity. Precipitation was found to be the primary driver influencing salinity fluctuations over the entire record, but watershed modifications on the mainland and in the Florida Keys during the late-1800s and 1900s were the most likely cause of significant shifts in baseline salinity. The timing of these shifts in the salinity baseline varies across the Bay: that of the northeastern coring location coincides with the construction of the Florida Overseas Railway (AD 1906–1916), while that of the east-central coring location coincides with the drainage of Lake Okeechobee (AD 1881–1894). Subsequent decreases occurring after the 1960s (east-central region) and early 1980s (southwestern region) correspond to increases in freshwater delivered through water control structures in the 1950s–1970s and again in the 1980s. Concomitant increases in salinity in the northeastern and south-central regions of the Bay in the mid-1960s correspond to an extensive drought period and the occurrence of three major hurricanes, while the drop in the early 1970s could not be related to any natural event. This paper provides information about major factors influencing salinity conditions in Florida Bay in the past and quantitative estimates of the pre- and post-South Florida watershed modification salinity levels in different regions of the Bay. This information should be useful for environmental managers in setting restoration goals for the marine ecosystems in South Florida, especially for Florida Bay.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Colleges base their admission decisions on a number of factors to determine which applicants have the potential to succeed. This study utilized data for students that graduated from Florida International University between 2006 and 2012. Two models were developed (one using SAT as the principal explanatory variable and the other using ACT as the principal explanatory variable) to predict college success, measured using the student’s college grade point average at graduation. Some of the other factors that were used to make these predictions were high school performance, socioeconomic status, major, gender, and ethnicity. The model using ACT had a higher R^2 but the model using SAT had a lower mean square error. African Americans had a significantly lower college grade point average than graduates of other ethnicities. Females had a significantly higher college grade point average than males.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traffic incidents are a major source of traffic congestion on freeways. Freeway traffic diversion using pre-planned alternate routes has been used as a strategy to reduce traffic delays due to major traffic incidents. However, it is not always beneficial to divert traffic when an incident occurs. Route diversion may adversely impact traffic on the alternate routes and may not result in an overall benefit. This dissertation research attempts to apply Artificial Neural Network (ANN) and Support Vector Regression (SVR) techniques to predict the percent of delay reduction from route diversion to help determine whether traffic should be diverted under given conditions. The DYNASMART-P mesoscopic traffic simulation model was applied to generate simulated data that were used to develop the ANN and SVR models. A sample network that comes with the DYNASMART-P package was used as the base simulation network. A combination of different levels of incident duration, capacity lost, percent of drivers diverted, VMS (variable message sign) messaging duration, and network congestion was simulated to represent different incident scenarios. The resulting percent of delay reduction, average speed, and queue length from each scenario were extracted from the simulation output. The ANN and SVR models were then calibrated for percent of delay reduction as a function of all of the simulated input and output variables. The results show that both the calibrated ANN and SVR models, when applied to the same location used to generate the calibration data, were able to predict delay reduction with a relatively high accuracy in terms of mean square error (MSE) and regression correlation. It was also found that the performance of the ANN model was superior to that of the SVR model. Likewise, when the models were applied to a new location, only the ANN model could produce comparatively good delay reduction predictions under high network congestion level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere Oceans (SHO) from 15°S to 64°S. The SHO database combines 3 existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/[DCO3]2- threshold of ~3800 m/[DCO3]2- = ~-10 to -5 µmol/kg for the Pacific and Indian Oceans, and ~4000 m/[DCO3]2- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core-tops beyond these thresholds from the SHO database. This database has 598 core-tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core-tops. We used this database to reconstruct Summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the 3 databases used to compile the SHO database. Thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich, database. We leave this dataset open-ended to future additions; the new core-tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents an analysis of the behavior of some algorithms usually available in stereo correspondence literature, with full HD images (1920x1080 pixels) to establish, within the precision dilemma versus runtime applications which these methods can be better used. The images are obtained by a system composed of a stereo camera coupled to a computer via a capture board. The OpenCV library is used for computer vision operations and processing images involved. The algorithms discussed are an overall method of search for matching blocks with the Sum of the Absolute Value of the difference (Sum of Absolute Differences - SAD), a global technique based on cutting energy graph cuts, and a so-called matching technique semi -global. The criteria for analysis are processing time, the consumption of heap memory and the mean absolute error of disparity maps generated.