913 resultados para Materials surface modifications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stainless steels are well known to be prone to cold welding and material transfer in sliding contacts and therefore difficult to cold form unless certain precautions as discussed in this paper are taken. In the present study different combinations of tool steels/stainless steels/lubricants has been evaluated with respect to their galling resistance using pin-on-disc testing. The results show that a high galling resistance is favored by a high stainless steel sheet hardness and a blasted stainless steel sheet surface topography. The effect of type of lubricant was found to be more complex. For example, the chlorinated lubricants failed to prevent metal-to-metal contact on a brushed sheet surface but succeeded on a blasted sheet surface of the same stainless steel material. This is believed to be due to a protective tribofilm which is able to form on the blasted surface, but not on the brushed surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two simulative test methods were used to study galling in sheet forming of two types of stainlesssteel sheet: austenitic (EN 1.4301) and lean duplex LDX 2101 (EN 1.4162) in different surface conditions. Thepin-on-disc test was used to analyse the galling resistance of different combinations of sheet materials and lubricants. The strip reduction test, a severe sheet forming tribology test was used to simulate the conditionsduring ironing. This investigation shows that the risk of galling is highly dependent on the surface texture of theduplex steel. Trials were also performed in an industrial tool used for high volume production of pumpcomponents, to compare forming of LDX 2101 and austenitic stainless steel with equal thickness. The forming forces, the geometry and the strains in the sheet material were compared for the same component.It was found that LDX steels can be formed to high strain levels in tools normally applied for forming ofaustenitic steels, but tool adaptations are needed to comply with the higher strength and springback of thematerial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface failure characteristics of different work roll materials, i.e. High Speed Steel, High Chromium Iron and Indefinite Chill Iron, used in the finishing stands of a hot strip mill have been investigated using stereo microscopy, 3D optical profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results show that the surface failure mechanisms of work rolls for hot rolling are very complex, involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. Despite the differences in chemical composition and microstructure, the tribological response of the different work roll materials was found to be strongly dependent on the material microstructure and especially the presence and distribution of microstructural constituents, such as the different carbide phases and graphite (in the case of Indefinite Chill Iron). Cracking and chipping of the work roll surfaces, both having a negative impact on work roll wear, are strongly influenced by the presence of carbides, carbide networks and graphite in the work roll surface. Consequently, the amount of carbide forming elements as well as the manufacturing process must be controlled in order to obtain an optimised microstructure and a predictable wear rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Important bentonitic deposits are present in Porto Santo Island, part of the Madeira Archipelago. Several locations were selected and samples were collected and characterised. The bentonite obtained at Serra de Dentro (SD) was selected for further laboratorial work. The fine fraction of SD bentonite was purified using several methods and the sodium homoionic form was prepared. This was the starting material used in the three generic types of modifications: metal exchange, acid activation and pillaring. These modifications produce materials with markedly different acidic (e.g. Brönsted and/or Lewis acidity), textural (e.g. increase of the surface area and active site accessibility) or structural (e.g. creation of permanent porous structures) properties. The wide range of materials obtained (including reference clays counterparts) was characterised in terms of chemical, structural, textural and catalytic properties. Limonene is an important raw material produced in Portugal, and its aromatisation reaction was chosen for the catalytic characterisation of the clay catalysts prepared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite resins have been subjected to structural modifications aiming at improved optical and mechanical properties. The present study consisted in an in vitro evaluation of the staining behavior of two nanohybrid resins (NH1 and NH2), a nanoparticulated resin (NP) and a microhybrid resin (MH). Samples of these materials were prepared and immersed in commonly ingested drinks, i.e., coffee, red wine and acai berry for periods of time varying from 1 to 60 days. Cylindrical samples of each resin were shaped using a metallic die and polymerized during 30 s both on the bottom and top of its disk. All samples were polished and immersed in the staining solutions. After 24 hours, three samples of each resin immersed in each solution were removed and placed in a spectrofotome ter for analysis. To that end, the samples were previously diluted in HCl at 50%. Tukey tests were carried out in the statistical analysis of the results. The results revealed that there was a clear difference in the staining behavior of each material. The nanoparticulated resin did not show better color stability compared to the microhybrid resin. Moreover, all resins stained with time. The degree of staining decreased in the sequence nanoparticulated, microhybrid, nanohybrid MH2 and MH1. Wine was the most aggressive drink followed by coffee and acai berry. SEM and image analysis revealed significant porosity on the surface of MH resin and relatively large pores on a NP sample. The NH2 resin was characterized by homogeneous dispersion of particles and limited porosity. Finally, the NH1 resin depicted the lowest porosity level. The results revealed that staining is likely related to the concentration of inorganic pa rticles and surface porosity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a simple route to prepare carbon supported Pt/C, Pt:Ru/C, Pt:Mo/C and Pt:Ru:Mo/C catalysts is reported. The electrochemical properties of the several carbon materials used as substrates in the absence and in the presence of supported platinum and platinum alloys catalysts were investigated using cyclic voltammetry and employing the thin porous coating electrode technique. The activity of the dispersed catalysts composed of Pt/C with respect to the oxygen reduction and of alloy/C with respect to methanol oxidation was investigated using steady state polarization measurements. The performance with respect to the oxygen reduction reaction of the Pt/C catalyst prepared on heat-treated Vulcan carbon substrate is equivalent to that reported in the literature for the state-of-the-art electrocatysts. Pt:Ru:Mo/C samples prepared in this work presented the higher catalytic effect for methanol electro-oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prosthetic composite is a widely used biomaterial that satisfies the criteria for application as an organic implant without adverse reactions. Polyethylene therephthalate (PET) fiber-reinforced composites have been used because of the excellent cell adhesion, biodegradability and biocompatibility. The chemical inertness and low surface energy of PET in general are associated with inadequate bonds for polymer reinforcements. It is recognized that the high strength of composites, which results from the interaction between the constituents, is directly related to the interfacial condition or to the interphase. A radio frequency plasma reactor using oxygen was used to treat PET fibers for 5, 20, 30 and 100 s. The treatment conditions were 13.56 MHz, 50 W, 40 Pa and 3.33 x 10(-7) m(3)/s. A Rame-Hart goniometer was used to measure the contact angle and surface energy variation of fibers treated for different times. The experimental results showed contact angle values from 47degrees to 13degrees and surface energies from 6.4 x 10(-6) to 8.3 x 10(-6) J for the range of 5 to 100 s, respectively. These results were confirmed by the average ultimate tensile strength of the PET fiber/polymethylmethacrylate (PMMA) matrix composite tested in tensile mode and by scanning electron microscopy. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon carbide (SiC) has been employed in many different fields such as ballistic armor, thermal coating, high performance mirror substrate, semiconductors devices, among other things. Plasma application over the silicon carbide ceramics is relatively recent and it is able to promote relevant superficial modifications. Plasma expander was used in this work which was supplied by nitrogen and switched by a capacitor bank. Nitrogen plasma was applied over ceramic samples for 20 minutes, in a total medium of 1440 plasma pulses. SiC ceramics were produced by uniaxial pressing method (40 MPa) associated to isostatic pressing (300 MPa) and sintered at 1950 degrees C under argon gas atmosphere. Silicon carbide (beta-sic - BF-12) supplied by HC-Starck and sintering additive (7.6% YAG - Yttrium Aluminum Garnet) were used in order to obtain the ceramics. Before and after the plasma application, the samples were characterized by SEM, AFM, contact angle and surface energy measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma treatments are frequently employed to modify surface properties of materials such as adhesivity, hydrophobicity, oleophobicity etc. Present work deals with surface modification of common commercial polymers such as polyethylene terephthalate (PET) and polyurethane (PU) by an air dielectric barrier discharge (DBD) at atmospheric pressure. The DBD treatment was performed in a plain reactor in wire-duct geometry (non-uniform field reactor), which was driven by a 60 Hz power supply. Material characterization was carried out by water contact angle measurements, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The plasma-induced modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. The AFM analysis reveals that the plasma treatment roughens the material surface. Due to these structural and morphological changes the surface of DBD-treated polymers becomes more hydrophilic resulting in enhanced adhesion properties. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium and their alloys have been used for biomedical applications due their excellent mechanical properties, corrosion resistance and biocompatibility. However, they are considered bioinerts materials because when they are inserted into the human body they are cannot form a chemical bond with bone. In several studies, the authors have attempted to modify their characteristic with treatments that changes the material surface. The purpose of this work was to evaluate obtaining of nanoapatite after growing of the nanotubes in surface of Ti-7.5Mo alloy. Alloy was obtained from c.p. titanium and molibdenium by using an arc-melting furnace. Ingots were submitted to heat treatment and they were cold worked by swaging. Nanotubes were processed using anodic oxidation of alloy in electrolyte solution. Surfaces were investigated using scanning electron microscope (SEM), FEG-SEM and thin-film x-ray diffraction. The results indicate that nanoapatite coating could form on surface of Ti-7.5Mo experimental alloy after nanotubes growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been developed to obtain quantitative information about grain size and shape from fractured surfaces of ceramic materials. One elaborated a routine to split intergranular and transgranular grains facets of ceramic fracture surfaces by digital image processing. A commercial ceramic (ALCOA A-16, Al2O3-1.5% of CrO) was used to test the proposed method. Microstructural measurements of grain shape and size taken from fracture surfaces have been compared through descriptive statistics of distributions, with the corresponding measurements from polished and etched surfaces. The agreement between results, with the expected bias on grain size values from fractures, obtained for both types of surfaces allowed to infer that this new technique can be used to extract the relevant microstructural information from fractured surfaces, thus minimising the time consuming steps of sample preparation. (C) 2003 Elsevier Ltd. All rights reserved.