990 resultados para Mass Measurement
Resumo:
In this work, 14 primary schools of Lisbon city, Portugal, followed a questionnaire of the ISAAC - International Study of Asthma and Allergies in Childhood Program, in 2009/2010. The questionnaire contained questions to identify children with respiratory diseases (wheeze, asthma and rhinitis). Total particulate matter (TPM) was passively collected inside two classrooms of each of 14 primary schools. Two types of filter matrices were used to collect TPM: Millipore (IsoporeTM) polycarbonate and quartz. Three campaigns were selected for the measurement of TPM: Spring, Autumn and Winter. The highest difference between the two types of filters is that the mass of collected particles was higher in quartz filters than in polycarbonate filters, even if their correlation is excellent. The highest TPM depositions occurred between October 2009 and March 2010, when related with rhinitis proportion. Rhinitis was found to be related to TPM when the data were grouped seasonally and averaged for all the schools. For the data of 2006/2007, the seasonal variation was found to be related to outdoor particle deposition (below 10 μm).
Resumo:
The importance of Social Responsibility (SR) is higher if this business variable is related with other ones of strategic nature in business activity (competitive success that the company achieved, performance that the firms develop and innovations that they carries out). The hypothesis is that organizations that focus on SR are those who get higher outputs and innovate more, achieving greater competitive success. A scale for measuring the orientation to SR has defined in order to determine the degree of relationship between above elements. This instrument is original because previous scales do not exist in the literature which could measure, on the one hand, the three classics sub-constructs theoretically accepted that SR is made up and, on the other hand, the relationship between SR and the other variables. As a result of causal relationships analysis we conclude with a scale of 21 indicators, validated scale with a sample of firms belonging to the Autonomous Community of Extremadura and it is the first empirical validation of these dimensions we know so far, in this context.
Resumo:
The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabView code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A crucial method for investigating patients with coronary artery disease (CAD) is the calculation of the left ventricular ejection fraction (LVEF). It is, consequently, imperative to precisely estimate the value of LVEF--a process that can be done with myocardial perfusion scintigraphy. Therefore, the present study aimed to establish and compare the estimation performance of the quantitative parameters of the reconstruction methods filtered backprojection (FBP) and ordered-subset expectation maximization (OSEM). Methods: A beating-heart phantom with known values of end-diastolic volume, end-systolic volume, and LVEF was used. Quantitative gated SPECT/quantitative perfusion SPECT software was used to obtain these quantitative parameters in a semiautomatic mode. The Butterworth filter was used in FBP, with the cutoff frequencies between 0.2 and 0.8 cycles per pixel combined with the orders of 5, 10, 15, and 20. Sixty-three reconstructions were performed using 2, 4, 6, 8, 10, 12, and 16 OSEM subsets, combined with several iterations: 2, 4, 6, 8, 10, 12, 16, 32, and 64. Results: With FBP, the values of end-diastolic, end-systolic, and the stroke volumes rise as the cutoff frequency increases, whereas the value of LVEF diminishes. This same pattern is verified with the OSEM reconstruction. However, with OSEM there is a more precise estimation of the quantitative parameters, especially with the combinations 2 iterations × 10 subsets and 2 iterations × 12 subsets. Conclusion: The OSEM reconstruction presents better estimations of the quantitative parameters than does FBP. This study recommends the use of 2 iterations with 10 or 12 subsets for OSEM and a cutoff frequency of 0.5 cycles per pixel with the orders 5, 10, or 15 for FBP as the best estimations for the left ventricular volumes and ejection fraction quantification in myocardial perfusion scintigraphy.
Resumo:
Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.
Resumo:
This paper discusses the photodiode capacitance dependence on imposed light and applied voltage using different devices. The first device is a double amorphous silicon pin-pin photodiode; the second one a crystalline pin diode and the last one a single pin amorphous silicon diode. Double amorphous silicon diodes can be used as (de)multiplexer devices for optical communications. For short range applications, using plastic optical fibres, the WDM (wavelength-division multiplexing) technique can be used in the visible light range to encode multiple signals. Experimental results consist on measurements of the photodiode capacitance under different conditions of imposed light and applied voltage. The relation between the capacitive effects of the double diode and the quality of the semiconductor internal junction will be analysed. The dynamics of charge accumulations will be measured when the photodiode is illuminated by a pulsed monochromatic light.
Resumo:
The analysis of the Higgs boson data by the ATLAS and CMS Collaborations appears to exhibit an excess of h -> gamma gamma events above the Standard Model (SM) expectations, whereas no significant excess is observed in h -> ZZ* -> four lepton events, albeit with large statistical uncertainty due to the small data sample. These results (assuming they persist with further data) could be explained by a pair of nearly mass-degenerate scalars, one of which is an SM-like Higgs boson and the other is a scalar with suppressed couplings to W+W- and ZZ. In the two-Higgs-doublet model, the observed gamma gamma and ZZ* -> four lepton data can be reproduced by an approximately degenerate CP-even (h) and CP-odd (A) Higgs boson for values of sin (beta - alpha) near unity and 0: 70 less than or similar to tan beta less than or similar to 1. An enhanced gamma gamma signal can also arise in cases where m(h) similar or equal to m(H), m(H) similar or equal to m(A), or m(h) similar or equal to m(H) similar or equal to m(A). Since the ZZ* -> 4 leptons signal derives primarily from an SM-like Higgs boson whereas the gamma gamma signal receives contributions from two (or more) nearly mass-degenerate states, one would expect a slightly different invariant mass peak in the ZZ* -> four lepton and gamma gamma channels. The phenomenological consequences of such models can be tested with additional Higgs data that will be collected at the LHC in the near future. DOI: 10.1103/PhysRevD.87.055009.
Resumo:
A multiresidue gas chromatographic method for the determination of six fungicides (captan, chlorthalonil, folpet, iprodione, procymidone and vinclozolin) and one acaricide (dicofol) in still and fortified wines was developed. Solid-phase microextraction (SPME) was chosen for the extraction of the compounds from the studied matrices and tandem mass spectrometry (MS/MS) detection was used. The extraction consists in a solvent free and automated procedure and the detection is highly sensitive and selective. Good linearity was obtained with correlation coefficients of regression (R2) > 0.99 for all the compounds. Satisfactory results of repeatability and intermediate precision were obtained for most of the analytes (RSD < 20%). Recoveries from spiked wine ranged from 80.1% to 112.0%. Limits of quantification (LOQs) were considerably below the proposedmaximumresidue limits (MRLs) for these compounds in grapes and below the suggested limits for wine (MRLs/10), with the exception of captan.
Resumo:
We have developed a new method for single-drop microextraction (SDME) for the preconcentration of organochlorine pesticides (OCP) from complex matrices. It is based on the use of a silicone ring at the tip of the syringe. A 5 μL drop of n-hexane is applied to an aqueous extract containing the OCP and found to be adequate to preconcentrate the OCPs prior to analysis by GC in combination with tandem mass spectrometry. Fourteen OCP were determined using this technique in combination with programmable temperature vaporization. It is shown to have many advantages over traditional split/splitless injection. The effects of kind of organic solvent, exposure time, agitation and organic drop volume were optimized. Relative recoveries range from 59 to 117 %, with repeatabilities of <15 % (coefficient of variation) were achieved. The limits of detection range from 0.002 to 0.150 μg kg−1. The method was applied to the preconcentration of OCPs in fresh strawberry, strawberry jam, and soil.
Resumo:
Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET),maximum excitation energy or “q” value (q), and isolationmass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit.Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.
Resumo:
Objective - To evaluate the effect of prepregnancy body mass index (BMI), energy and macronutrient intakes during pregnancy, and gestational weight gain (GWG) on the body composition of full-term appropriate-for-gestational age neonates. Study Design - This is a cross-sectional study of a systematically recruited convenience sample of mother-infant pairs. Food intake during pregnancy was assessed by food frequency questionnaire and its nutritional value by the Food Processor Plus (ESHA Research Inc, Salem, OR). Neonatal body composition was assessed both by anthropometry and air displacement plethysmography. Explanatory models for neonatal body composition were tested by multiple linear regression analysis. Results - A total of 100 mother-infant pairs were included. Prepregnancy overweight was positively associated with offspring weight, weight/length, BMI, and fat-free mass in the whole sample; in males, it was also positively associated with midarm circumference, ponderal index, and fat mass. Higher energy intake from carbohydrate was positively associated with midarm circumference and weight/length in the whole sample. Higher GWG was positively associated with weight, length, and midarm circumference in females. Conclusion - Positive adjusted associations were found between both prepregnancy BMI and energy intake from carbohydrate and offspring body size in the whole sample. Positive adjusted associations were also found between prepregnancy overweight and adiposity in males, and between GWG and body size in females.
Resumo:
Cada vez mais começa a notar-se, na indústria vitivinícola, uma grande preocupação com a qualidade dos seus produtos, motivada pela maior sensibilização e exigência dos consumidores. Deste modo, a presença de defeitos organoléticos no vinho representa uma fonte de perda financeira nesta indústria, pelo que o seu controlo se torna indispensável para que se obtenha um produto de elevada qualidade. Neste sentido, torna-se interessante desenvolver um método de análise que seja rápido de forma a permitir a quantificação simultânea das moléculas identificadas como principais responsáveis pelos distúrbios olfativos dos vinhos. Assim, este trabalho surge com o objetivo de implementar e validar um método para a determinação de contaminantes em vinho por microextração em fase sólida (SPME) e cromatografia gasosa acoplada à espetrometria de massa tandem (GC-MS/MS) e a sua correlação com a análise sensorial. A técnica de microextração em fase sólida é simples e rápida na medida em que não requer um pré-tratamento da amostra. Por sua vez, a análise por GC-MS permite identificar de forma clara os compostos em estudo, nomeadamente, 4-Etilfenol (4-EP), 4-Etilguaiacol (4-EG), 2,4,6-Tricloroanisol (TCA), 2,3,4,6-Tetracloroanisol (TeCA) e 2,4,6-Tribromoanisol (TBA). Foram realizados estudos de otimização das condições de extração, comparando as fibras 100 μm PDMS e 50/30 μm DVB/CAR/PDMS. Obtiveram-se resultados mais satisfatórios, em termos de resposta e da relação sinal/ruído, com a fibra 50/30 μm DVB/CAR/PDMS e estabeleceram-se como condições de extração 55ºC para a temperatura de incubação/extração, uma velocidade de agitação de 250 rpm e 60 minutos de tempo de extração. Ao longo deste trabalho, analisaram-se 50 amostras de vinho, das quais 48 eram amostras de Vinho Tinto do Douro e 2 de Vinho do Porto. Para validar a metodologia foram realizados estudos de linearidade, limiares analíticos, repetibilidade, precisão intermédia e recuperação. De um modo geral, obtiveram-se bons resultados ao nível da linearidade para as gamas de concentração escolhidas. Quanto aos limites de deteção e de quantificação, o 4-EP é o contaminante que apresenta uma gama de concentrações mais alta, notando-se limiares analíticos mais elevados, com valores próximos dos últimos níveis de concentração, oscilando entre 65 e 583 μg/L. No caso dos Anisóis, o TBA apresenta limites de deteção mais baixos, entre 0,4 e 17,0 ng/L. Os limiares analíticos foram validados com recurso a estudos de precisão intermédia e repetibilidade, cujos resultados se encontram dentro das especificações descritas no documento SANCO/10684/2009 (%RSD ≤ 30% para os Anisóis e %RSD ≤ 20% para os Fenóis Voláteis). Foram, ainda, realizados estudos de exatidão recorrendo a ensaios de recuperação e a ensaios interlaboratoriais. Muitas vezes conseguem-se boas recuperações, no entanto notam-se maiores dificuldades para o TBA e para o TeCA. Relativamente aos ensaios interlaboratoriais, verificam-se maiores discrepâncias para o 4-EP. Já os restantes contaminantes apresentam resultados, geralmente, satisfatórios (|z-score| ≤ 2).
Resumo:
OBJECTIVE: To determine the best cut-offs of body mass index for identifying alterations of blood lipids and glucose in adolescents. METHODS: A probabilistic sample including 577 adolescent students aged 12-19 years in 2003 (210 males and 367 females) from state public schools in the city of Niterói, Southeastern Brazil, was studied. The Receiver Operating Characteristic curve was used to identify the best age-adjusted BMI cut-off for predicting high levels of serum total cholesterol (>150mg/dL), LDL-C (>100mg/dL), serum triglycerides (>100mg/dL), plasma glucose (>100mg/dL) and low levels of HDL-C (< 45mg/dL). Four references were used to calculate sensitivity and specificity of BMI cut-offs: one Brazilian, one international and two American. RESULTS: The most prevalent metabolic alterations (>50%) were: high total cholesterol and low HDL-C. BMI predicted high levels of triglycerides in males, high LDL-C in females, and high total cholesterol and the occurrence of three or more metabolic alterations in both males and females (areas under the curve range: 0.59 to 0.67), with low sensitivity (57%-66%) and low specificity (58%-66%). The best BMI cut-offs for this sample (20.3 kg/m² to 21.0 kg/m²) were lower than those proposed in the references studied. CONCLUSIONS: Although BMI values lower than the International cut-offs were better predictor of some metabolic abnormalities in Brazilian adolescents, overall BMI is not a good predictor of these abnormalities in this population.
Resumo:
Mestrado em Contabilidade
Resumo:
Nanotechnology is an important emerging industry with a projected annual market of around one trillion dollars by 2015. It involves the control of atoms and molecules to create new materials with a variety of useful functions. Although there are advantages on the utilization of these nano-scale materials, questions related with its impact over the environment and human health must be addressed too, so that potential risks can be limited at early stages of development. At this time, occupational health risks associated with manufacturing and use of nanoparticles are not yet clearly understood. However, workers may be exposed to nanoparticles through inhalation at levels that can greatly exceed ambient concentrations. Current workplace exposure limits are based on particle mass, but this criteria could not be adequate in this case as nanoparticles are characterized by very large surface area, which has been pointed out as the distinctive characteristic that could even turn out an inert substance into another substance exhibiting very different interactions with biological fluids and cells. Therefore, it seems that, when assessing human exposure based on the mass concentration of particles, which is widely adopted for particles over 1 μm, would not work in this particular case. In fact, nanoparticles have far more surface area for the equivalent mass of larger particles, which increases the chance they may react with body tissues. Thus, it has been claimed that surface area should be used for nanoparticle exposure and dosing. As a result, assessing exposure based on the measurement of particle surface area is of increasing interest. It is well known that lung deposition is the most efficient way for airborne particles to enter the body and cause adverse health effects. If nanoparticles can deposit in the lung and remain there, have an active surface chemistry and interact with the body, then, there is potential for exposure. It was showed that surface area plays an important role in the toxicity of nanoparticles and this is the metric that best correlates with particle-induced adverse health effects. The potential for adverse health effects seems to be directly proportional to particle surface area. The objective of the study is to identify and validate methods and tools for measuring nanoparticles during production, manipulation and use of nanomaterials.