986 resultados para Magnetization
Resumo:
Polycrystalline Nd1-xEuxNiO3 (0≤x≤0.5) compounds were synthesized in order to investigate the character of the metal-insulator (MI) phase transition in this series. Samples were prepared through the sol-gel route and subjected to heat treatments at ∼1000 °C under oxygen pressures as high as 80bar. X-ray diffraction (XRD) and neutron powder diffraction (NPD), electrical resistivity ρ(T), and magnetization M(T) measurements were performed on these compounds. The NPD and XRD results indicated that the samples crystallize in an orthorhombic distorted perovskite structure, space group Pbnm. The analysis of the structural parameters revealed a sudden and small expansion of ∼0.2% of the unit cell volume when electronic localization occurs. This expansion was attributed to a small increase of ∼0.003 of the average Ni-O distance and a simultaneous decrease of ∼-0.5° of the Ni-O-Ni superexchange angle. The ρ(T) measurements revealed a MI transition occurring at temperatures ranging from TMI∼193 to 336K for samples with x ≤ 0 and 0.50, respectively. These measurements also show a large thermal hysteresis in NdNiO3 during heating and cooling processes, suggesting a first-order character of the phase transition at TMI. The width of this thermal hysteresis was found to decrease appreciably for the sample Nd 0.7Eu0.3NiO3. The results indicate that cation disorder associated with increasing substitution of Nd by Eu is responsible for changing the first-order character of the transition in NdNiO3. © 2006 IOP Publishing Ltd.
Resumo:
The crystallization of fluoroindate glasses doped with Gd3+, Mn2+ and Cu2+ heat treated at different temperatures, ranging from the glass transition temperature (Tg) to the crystallization temperature (Tc), are investigated by electron paramagnetic resonance (EPR) and 19F nuclear magnetic resonance (NMR). The EPR spectra indicate that the Cu2+ ions in the glass are located in axially distorted octahedral sites. In the crystallized glass, the g-values agreed with those reported for Ba2ZnF6, which correspond to Cu2+ in a tetragonal compressed F- octahedron and to Cu2+ on interstitial sites with a square-planar F- co-ordination. The EPR spectra of the Mn2+ doped glasses exhibit a sextet structure due to the Mn2+ hyperfine interaction. These spectra suggest a highly ordered environment for the Mn2+ ions (close to octahedral symmetry) in the glass. The EPR spectra of the recrystallized sample exhibit resonances at the same position, suggesting that the Mn2+ ions are located in sites of highly symmetric crystalline field. The increase of the line intensity of the sextet and the decrease of the background line in the thermal treated samples suggest that the Mn2+ ions move to the highly ordered sites which contribute to the sextet structure. The EPR spectra of the Gd3+ doped glasses exhibit the typical U-spectrum of a s-state ion in a low symmetry site in disordered systems. The EPR of the crystallized glasses, in contrast, have shown a strong resonance in g ≈ 2.0, suggesting Gd3+ ions in environment close to cubic symmetry. The 19F NMR spin-lattice relaxation rates were also strongly influenced by the crystallization process that takes over in samples annealed above Tc. For the glass samples (doped or undoped) the 19F magnetization recoveries were found to be adjusted by an exponential function and the spin-lattice relaxation was characterized by a single relaxation time. In contrast, for the samples treated above Tc, the 19F magnetization-recovery becomes non-exponential. A remarkable feature of our results is that the changes in the Cu2+, Mn2+, Gd3+ EPR spectra and NMR relaxation, are always observed for the samples annealed above Tc. © 2006 Elsevier B.V. All rights reserved.
Resumo:
We present results of our numerical study of the critical dynamics of percolation observables for the two-dimensional Ising model. We consider the (Monte Carlo) short-time evolution of the system with small initial magnetization and heat-bath dynamics. We find qualitatively different dynamic behaviors for the magnetization M and for Ω, the so-called strength of the percolating cluster, which is the order parameter of the percolation transition. More precisely, we obtain a (leading) exponential form for Ω as a function of the Monte Carlo time t, to be compared with the power-law increase encountered for M at short times. Our results suggest that, although the descriptions in terms of magnetic or percolation order parameters may be equivalent in the equilibrium regime, greater care must be taken to interpret percolation observables at short times.
Resumo:
We have established a link between the global ac response and the local flux distribution of superconducting films by combining magnetic ac susceptibility, dc magnetization, and magneto-optical measurements. The investigated samples are three Nb films: a plain specimen, used as a reference sample, and other two films patterned with square arrays of antidots. At low temperatures and small ac amplitudes of the excitation field, the Meissner screening prevents penetration of flux into the sample. Above a certain ac drive threshold, flux avalanches are triggered during the first cycle of the ac excitation. The subsequent periodic removal, inversion, and rise of flux occurs essentially through the already-created dendrites, giving rise to an ac susceptibility signal weakly dependent on the applied field. The intradendrite flux oscillation is followed, at higher values of the excitation field, by a more drastic process consisting of creation of new dendrites and antidendrites. In this more invasive regime, the ac susceptibility shows a clear field dependence. At higher temperatures a smooth penetration occurs, and the flux profile is characteristic of a critical state. We have also shown that the regime dominated by vortex avalanches can be reliably identified by ac susceptibility measurements. © 2011 American Physical Society.
Resumo:
This communication reports that FeWO 4 nanocrystals were successfully synthesized by the microwave-hydrothermal method at 443 K for 1 h. The structure and shape of these nanocrystals were characterized by X-ray diffraction, Rietveld refinement, and transmission electron microscopy. The experimental results and first principles calculations were combined to explain the electronic structure and magnetic properties. Experimental data were obtained by magnetization measurements for different applied magnetic fields. Theoretical calculations revealed that magnetic properties of FeWO 4 nanocrystals can be assigned to two magnetic orderings with parallel or antiparallel spins in adjacent chains. These factors are crucial to understanding of competition between ferro- and antiferromagnetic behavior. © 2012 Elsevier Inc.
Resumo:
The magnetic characteristics of Ga1-xMnxN nanocrystalline films (x = 0.08 and x = 0.18), grown by reactive sputtering onto amorphous silica substrates (a-SiO2), are shown. Further than the dominant paramagnetic-like behaviour, both field- and temperature-dependent magnetization curves presented some particular features indicating the presence of secondary magnetic phases. A simple and qualitative analysis based on the Brillouin function assisted the interpretation of these secondary magnetic contributions, which were tentatively attributed to antiferromagnetic and ferromagnetic phases. © 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
We report on the influence of a circular defect on the vortex configuration in a mesoscopic superconducting sample. Effects associated with the pinning force of the circular defect on the configuration and on the vortex entry fields are studied for a very thin disk. We calculate the magnetization loop, vorticity, free energy and superconducting electrons for the disk in presence of an external magnetic field applied perpendicular to the disk plane. The magnetization curves are hysteretic, with paramagnetic response in part of the downward branch, also, in this part we found a vortex-anti-vortex state. © 2013 World Scientific Publishing Company.
Resumo:
The phase transitions that occur in the Cu-22.26 at.%Al-9.93 at.%Mn and Cu-22.49 at.%Al-10.01 at.%Mn-1.53 at.%Ag alloys after slow cooling were studied using differential scanning calorimetry at different heating rates, microhardness changes with temperature, magnetization changes with temperature, scanning electron microscopy and energy dispersion X-ray spectroscopy. The results indicated that the presence of Ag does not modify the transition sequence of Cu-Al-Mn alloy, introduces a new transition due to the (Ag-Cu)-rich precipitates dissolution at about 800 K, and changes the mechanism of DO 3 phase dissolution. This mechanistic change was analyzed and a sequence of phase transitions was proposed for the reaction. © 2013 Elsevier B.V.
Resumo:
The structural and magnetic properties of the cubic spinel oxide Co 2MnO4 (Fd3m space group) doped with different concentrations of bismuth, were investigated by X-ray diffraction and SQUID magnetometry. The Bi3+ ions entering into the CoIII octahedral sites do not alter the effective moment, μeff ∼8.2 μB, whereas both the magnetization M50 kOe at the highest field (50 kOe) and the field-cooled MFC magnetizations increased when increasing the Bi content. The ferrimagnetic character of the parent compound, Co2MnO4, is maintained for all materials although the antiferromagnetic interactions Co2+-Co2+ are affected, resulting in higher values of the Curie-Weiss temperature. Due to the large ionic radius of Bi, octahedra distortions occur as well as valence fluctuations of the Mn ions, giving rise to Jahn-Teller effects and enhancing the exchange interactions. The off-center Bi3+ ion is responsible of non-centrosymmetric charge ordering and should lead to multiferroïsme conditions for the BixCo2-xMnO4 material. © 2012 Elsevier B.V.
Resumo:
It is shown that highly conducting films of polyaniline protonated with di-esters of sulfosuccinic and sulfophthalic acids which contain alkyl- or alkoxy-type substituents exhibit highly anisotropic structural, electrical and magnetic properties. The layered-like structure of these films can be described as consisting of polyaniline chains which are mainly oriented parallel to the plane of the film and form regular out-of-plane stacks. These stacks are separated by bilayers of the dopant anions. Accordingly, the main anisotropy observed for solution cast films implies in-plane and out-of-plane measurements. An electrical anisotropy of about 80 is found for the in-plane and out-of-plane electronic conductivities at 5 K. The temperature dependences of the in-plane and out-of-plane conductivities are qualitatively similar and have been fitted as a series combination of variable-range-hopping-type and power law contributions. A maximum is observed in the temperature dependence of the electrical anisotropy at low temperature. The films also show a clear anisotropy of magnetization whose temperature and field characteristics depend on the chemical structure of the dopant anion. © 2013 Elsevier B.V.
Resumo:
Hydrogenated bulk Zn1-xCoxO samples were synthesized via standard solid-state reaction route with Co molar concentrations up to 15 at.%. Magnetic characterization demonstrates a room temperature ferromagnetic behavior associated to a paramagnetic Curie-Weiss component. Detailed microstructural analysis was carried out to exclude the presence of extrinsic sources of ferromagnetism. The magnetization increases linearly as a function of Co concentration. Hall measurements reveal an insulating character for the whole set of samples. In this context, the defect mediated magnetic coupling between the Co atoms under the scope of the bound magnetic polarons model is used to interpret the observed room temperature ferromagnetism. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The influence of superficial defects on the vortex configurations of a thin superconducting disk is investigated within the time dependent Ginzburg-Landau formalism. The free energy, magnetization, vorticity, and the Cooper pair density are calculated for both metastable and stable vortex configurations and different number of defects on its surface in the presence of an external magnetic field applied perpendicular to the disk area. We show that the competition between the confinement geometry and the geometric position of the defects leads to non-conventional vortex configurations which are not compatible with the symmetry of the sample geometry.
Resumo:
By combining galvanic displacement and electrodeposition techniques, an ordered Fe20Rh80 structure deposited onto brass was investigated by X-ray diffractometry, Mössbauer spectroscopy and magnetization measurements. Mössbauer and X-ray diffraction analyses suggest that the Fe-Rh alloy directly electrodeposited onto brass displays a nanocrystalline state while a similar alloy deposited onto Ag/brass shows a faced centered cubic-like structure, with dendrites-like features. These results directly indicate that the presence of Ag seed layer is responsible for the Fe-Rh alloy crystallization process. In addition, room temperature Mössbauer data indicate firstly paramagnetic states for two Fe-species. In the dominant Fe-species (major fraction of the Mössbauer spectra), Fe atoms are situated at a cubic environment and it can be attributed to the γ-Fe20Rh80 alloy based on their hyperfine parameters. In the second species, Fe atoms are placed in a non-local symmetry, which can be related to Fe atoms at the grain boundaries or/and Fe small clusters. These Fe-clusters are in superparamagnetic state at room temperature, but they may be ordered below 45 K, as suggested by magnetization data. © 2013 Elsevier B.V. All rights reserved.
Resumo:
We investigate theoretically a ferrofluid in the presence of a rotating magnetic field using a phenomenological approach based on a equation of motion for the magnetization. We verify that the heating rates of the system display a heat transfer between the host liquid and the magnetic nanoparticles (MNPs), with symmetric profiles dependent on the vorticity value. As a result, the total heating rate reveals a magnetovortical antiresonance and characterizes the suppression of the dissipation. © 2012 Springer Science+Business Media, LLC.
Resumo:
In this study, we report on a new route of PEGylation of superparamagnetic iron oxide nanoparticles (SPIONs) by polycondensation reaction with carboxylate groups. Structural and magnetic characterizations were performed by X-ray diffractometry (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The XRD confirmed the spinel structure with a crystallite average diameter in the range of 3.5-4.1 nm in good agreement with the average diameter obtained by TEM (4.60-4.97 nm). The TGA data indicate the presence of PEG attached onto the SPIONs' surface. The SPIONs were superparamagnetic at room temperature with saturation magnetization (M S) from 36.7 to 54.1 emu/g. The colloidal stability of citrate- and PEG-coated SPIONs was evaluated by means of dynamic light scattering measurements as a function of pH, ionic strength, and nature of dispersion media (phosphate buffer and cell culture media). Our findings demonstrated that the PEG polymer chain length plays a key role in the coagulation behavior of the Mag-PEG suspensions. The excellent colloidal stability under the extreme conditions we evaluated, such as high ionic strength, pH near the isoelectric point, and cell culture media, revealed that suspensions comprising PEG-coated SPION, with PEG of molecular weight 600 and above, present steric stabilization attributed to the polymer chains attached onto the surface of SPIONs. © 2013 Springer Science+Business Media Dordrecht.