1000 resultados para Métodos moleculares
Resumo:
The composite membranes prepared via incorporation of 12.5% of molecular sieves 3A, 4A, 5A and 13X into chitosan/poly(vinyl alcohol) (1:1). The composite membranes were immersed in the cross-linker sulfuric acid in order to acquire high proton conductivity for applications in electrolytes in PEMCF and DMF. The influence of the molecular sieves on the structural, optical, thermal, mechanical, morphologic and protonic conductivity properties and water/methanol swelling degree of membranes were investigated.
Resumo:
Three analytical methods for the determination of BTEX in water were optimized and validated. With the best method the analytes were extracted of 10 mL of sample with 2.50 g of NaCl in headspace vial of 20 mL by HS and SPME to 40 ºC for 30 min for adsorption and to 250 ºC for 4 min for desorption and were analyzed by GC-MS. The recovery was between 97.9% and 104.3%, and the limit of detection was 2.4 ng L-1 for o-xylene. This method was using to analyze BTEX in water supply and surface water in Ouro Preto city. No sample had concentrations of BTEX above the legislation.
Resumo:
The development of analytical methods for determination of eight pesticides of different chemical classes (trichlorfon, propanil, fipronil, propiconazole, trifloxystrobin, permethrin, difenoconazole and azoxystrobin) in sediments with gas chromatography-micro-electron capture detector (GC/µECD) and comprehensive two-dimensional gas chromatography with micro-electron capture detector (GCxGC/µECD) is described. These methods were applied to real sediment samples, and the best results were obtained using a 5% diphenyl-methylpolysiloxane column for 1D-GC. For GCxGC the same column was employed in the first dimension and a 50%-phenyl-methylpolysiloxane stationary phase was placed in the second dimension. Due to the superior peak capacity and selectivity of GCxGC, interfering matrix peaks were separated from analytes, showing a better performance of GCxGC.
Resumo:
The goal of this work is the development and validation of an analytical method for fast quantification of sibutramine in pharmaceutical formulations, using diffuse reflectance infrared spectroscopy and partial least square regression. The multivariate model was elaborated from 22 mixtures containing sibutramine and excipients (lactose, microcrystalline cellulose, colloidal silicon dioxide and magnesium stearate) and using fragmented (750-1150/ 1350-1500/ 1850-1950/ 2600-2900 cm-1) and smoothing spectral data. Using 10 latent variables, excellent predictive capacity were observed in the calibration (n=20, RMSEC=0.004, R= 0.999) and external validation (n=5, RMSEC= 9.36, R=0.999) phases. In the analysis of synthetic mixtures the precision (SD=3,47%) was compatible with the rules of the Agencia Nacional de Vigilância Sanitária (ANVISA-Brazil). In the analysis of commercial drugs good agreement was observed between spectroscopic and chromatographic methods.
Resumo:
A computational method to simulate the changes in the electronic structure of Ga1-xMn xN was performed in order to improve the understanding of the indirect contribution of Mn atoms. This periodic quantum-mechanical method is based on density functional theory at B3LYP level. The electronic structures are compared with experimental data of the absorption edge of the GaMnN. It was observed that the indirect influence of Mn through the structural parameters can account for the main part of the band gap variation for materials in the diluted regime (x<0.08), and is still significant for higher compositions (x~0.18).
Resumo:
Computational methods for the calculation of dynamical properties of fluids might consider the system as a continuum or as an assembly of molecules. Molecular dynamics (MD) simulation includes molecular resolution, whereas computational fluid dynamics (CFD) considers the fluid as a continuum. This work provides a review of hybrid methods MD/CFD recently proposed in the literature. Theoretical foundations, basic approaches of computational methods, and dynamical properties typically calculated by MD and CFD are first presented in order to appreciate the similarities and differences between these two methods. Then, methods for coupling MD and CFD, and applications of hybrid simulations MD/CFD, are presented.
Resumo:
In this work a sulfide quantification protocol using voltammetric methods was developed to evaluate the effect of dissolved sulfides on copper complexation. On the basis of pH, sulfide release from the dissociation of specific metal sulfide complexes can be electrochemically measured and then removed (as H2S) by a N2 purge. Cathodic stripping square wave voltammetry (CSSWV) was conducted to quantify Cu sulfides complexes which dissociate at pH < 5.0 during the process of acid titration.
Resumo:
For decades the Hydroxyapatite (HA) was only bioceramic of calcium phosphate system used for bone replacement and regeneration, due to its similarity to the mineral phase of bones and teeth. Because its slow degradation, other calcium phosphate classified as biodegradable started to awaken interest, such as: amorphous calcium phosphate (ACP), octacalcium phosphate (OCP) and tricalcium phosphate (TCP). This work presents the evolution of the use of other calcium phosphates due to their better solubility than the HA, comparing their main physical-chemical and biological properties. Are also presented the main methods used to obtain bioceramic coatings on metal and polymer surfaces.
Resumo:
This work presents a density functional theory study of the norbornene ROMP metathesis reactions. The energies have been calculated in a Grubbs catalyst model Cl2(PH3)2Ru=CH2. The geometries and energy profile are similar to the Grubbs metilydene (Cl2(PCy3)2Ru=CH2 real model. It was found that the metathesis reaction proceeds via associative mechanism (catalyst-norbonene) followed by dissociative substitution of a phosphine ligand with norbonene, giving a monophosphine complex. The results are in reasonable agreement with the available experimental data. The dissociation energy of the phosphines is predicted to be 23.2 kcal mol-1.
Resumo:
Pulp hemicelluloses can be extracted with NaOH and quantified by colorimetric and gravimetric techniques. However the most usual methods to measure eucalyptus pulp hemicelluloses have been through the pentosan method or through xylan analyses by GC or HPLC techniques. In this study a comparison was made between the more traditional methods and indirect method of NaOH 5% extraction followed by colorimetric analyses. It was observed that the content of NaOH 5% extract correlates very well with pulp xylan content and reasonably well with the pentosan content. It is concluded that the 5% NaOH solubility method can be used in replacement of the other two, since it is faster, simpler and less costly to carry out than the others.
Resumo:
The development of new magnetic materials has attracted attention of researchers of different areas. In the last decades, a distinguished class of materials emerged in magnetism, in which the magnetic moment is delocalized over molecules. By varying the synthetic conditions it is possible to obtain a large variety of structures and properties using the same starting molecules. These materials have a great scientific appeal due to the possibility of presenting not only magnetic, but also optical or electrical transport properties. In this review we will present an overview of some molecular magnetic compounds, in particular molecular nanomagnets.
Resumo:
In the literature there are a considerable number of chemical and biochemical tests for evaluation of in vitro antioxidant activities of pure compounds or fractions and organic extracts. These tests are important tools for screening of synthetic and natural bioactive compound as well as they can be employed in food chemistry. This work is a critical review of the main methods employed for in vitro antioxidant determination.
Resumo:
In this work, the organic compounds of cigar samples from different brands were analyzed. The compound extraction was made using the matrix solid-phase dispersion (MSPD) technique, followed by gas chromatography and identification by mass spectrometry (GC-MS) and standards, when available. Thirty eight organic compounds were found in seven different brands. Finally, with the objective of characterizing and discriminating the cigar samples, multivariate statistical analyses were applied to data, e.g.; principal component analysis (PCA) and hierarchical cluster analysis (HCA). With such analyses, it was possible to discriminate three main groups of three quality levels.
Resumo:
This paper evaluates the adsorption capacity of zirconocene-based silica materials in the pre-concentration of antimicrobians (tetracycline, sulfamethoxazole and trimethoprim) in aqueous medium. These materials were prepared by grafting the zirconocene onto silicas pre-treated at different temperatures. The retention capacity of these materials was evaluated by off line SPE and HPLC-UV and the proposed methodology was validated in ultrapure, tap and river water. The recovery for tetracycline was 72% (in the solid phase A) and, for sulfamethoxazole and trimethoprim was 68 and 95% in the commercial C18, respectively. The target antimicrobians were not detected in the Arroio Dilúvio (Porto Alegre - RS).
Resumo:
The use of dyes in the commercialization of fuel is usually associated with protection of the source and destination. It is used as "markers" to identify and guarantee the identity of the specific product of a particular manufacturer to discourage theft, tampering and disclosure of the quality of solvent or fuel. This work presents a critical analysis on the state of the art about the available analytical methods for identification and quantification of dyes used as markers of solvents and fuels, as well as evaluation of the physical-chemical staining and laws surrounding their use and commercialization.