932 resultados para Jorge Alvarez Editor
Resumo:
. RESUMEN. La influencia de la Arquitectura en el Cómic es asunto probado. Críticos y estudiosos como Eco, Masotto, Montaner o Smolderen así lo atestiguan. La ciudad y su arquitectura son protagonistas en “The Yellow Kid” de Outcoult de 1896 y de las visiones perspectivas de metrópolis como New York en “Little Nemo” de Mc Cay de 1910. Los aportes más significativos a la visión de la arquitectura desde el cómic tal vez hayan sido los desarrollados por Hergé y sus ciudades de ficción construidas a partir de lugares y ciudades reales. Los arquitectos comienzan a manejar el lenguaje del cómic en los manifiestos de Archigram y de Superstudio, hasta llegar a nuestros días con los aportes de Koolhaas, Big o Herzog y de Meuron. El surgimiento de la dupla de Peeters y Schuiten adquiere en este contexto relevancia significativa. En la serie conocida como las “Ciudades Oscuras” la arquitectura es protagonista, y por tanto sus constructores: promotores inmobiliarios, políticos y arquitectos también lo son. La figura descollante del panorama arquitectónico de las Ciudades Oscuras es Eugéne Robick, en cuya obra es detectable la influencia de arquitectos como Horta o Sant´Elía. La obra de Schuiten y Peeters prueba el valor y la importancia del cómic en la mediática cultural contemporánea; cómic que permite forzar los límites de la realidad y desarrollar nuevas interpretaciones sin otros condicionamientos que los de la imaginación.
Resumo:
Análisis del proceso de formación de precios en el mercado residencial de Lisboa desde el punto de vista de la eliminación de los aspectos subjetivos de la apreciación por el tasador de las características de los inmuebles
Resumo:
Recently, the Semantic Web has experienced significant advancements in standards and techniques, as well as in the amount of semantic information available online. Nevertheless, mechanisms are still needed to automatically reconcile information when it is expressed in different natural languages on the Web of Data, in order to improve the access to semantic information across language barriers. In this context several challenges arise [1], such as: (i) ontology translation/localization, (ii) cross-lingual ontology mappings, (iii) representation of multilingual lexical information, and (iv) cross-lingual access and querying of linked data. In the following we will focus on the second challenge, which is the necessity of establishing, representing and storing cross-lingual links among semantic information on the Web. In fact, in a “truly” multilingual Semantic Web, semantic data with lexical representations in one natural language would be mapped to equivalent or related information in other languages, thus making navigation across multilingual information possible for software agents.
Resumo:
In this paper, we describe our approach for Cross-Lingual linking of Indian news stories, submitted for Cross-Lingual Indian News Story Search (CL!NSS) task at FIRE 2012. Our approach consists of two major steps, the reduction of search space by using di�erent features and ranking of the news stories according to their relatedness scores. Our approach uses Wikipedia-based Cross-Lingual Explicit Semantic Analysis (CLESA) to calculate the semantic similarity and relatedness score between two news stories in di�erent languages. We evaluate our approach on CL!NSS dataset, which consists of 50 news stories in English and 50K news stories in Hindi.
Resumo:
Recently, the Semantic Web has experienced signi�cant advancements in standards and techniques, as well as in the amount of semantic information available online. Even so, mechanisms are still needed to automatically reconcile semantic information when it is expressed in di�erent natural languages, so that access to Web information across language barriers can be improved. That requires developing techniques for discovering and representing cross-lingual links on the Web of Data. In this paper we explore the different dimensions of such a problem and reflect on possible avenues of research on that topic.
Resumo:
The Semantic Web is an extension of the traditional Web in which meaning of information is well defined, thus allowing a better interaction between people and computers. To accomplish its goals, mechanisms are required to make explicit the semantics of Web resources, to be automatically processed by software agents (this semantics being described by means of online ontologies). Nevertheless, issues arise caused by the semantic heterogeneity that naturally happens on the Web, namely redundancy and ambiguity. For tackling these issues, we present an approach to discover and represent, in a non-redundant way, the intended meaning of words in Web applications, while taking into account the (often unstructured) context in which they appear. To that end, we have developed novel ontology matching, clustering, and disambiguation techniques. Our work is intended to help bridge the gap between syntax and semantics for the Semantic Web construction.
Resumo:
The Web has witnessed an enormous growth in the amount of semantic information published in recent years. This growth has been stimulated to a large extent by the emergence of Linked Data. Although this brings us a big step closer to the vision of a Semantic Web, it also raises new issues such as the need for dealing with information expressed in different natural languages. Indeed, although the Web of Data can contain any kind of information in any language, it still lacks explicit mechanisms to automatically reconcile such information when it is expressed in different languages. This leads to situations in which data expressed in a certain language is not easily accessible to speakers of other languages. The Web of Data shows the potential for being extended to a truly multilingual web as vocabularies and data can be published in a language-independent fashion, while associated language-dependent (linguistic) information supporting the access across languages can be stored separately. In this sense, the multilingual Web of Data can be realized in our view as a layer of services and resources on top of the existing Linked Data infrastructure adding i) linguistic information for data and vocabularies in different languages, ii) mappings between data with labels in different languages, and iii) services to dynamically access and traverse Linked Data across different languages. In this article we present this vision of a multilingual Web of Data. We discuss challenges that need to be addressed to make this vision come true and discuss the role that techniques such as ontology localization, ontology mapping, and cross-lingual ontology-based information access and presentation will play in achieving this. Further, we propose an initial architecture and describe a roadmap that can provide a basis for the implementation of this vision.
Resumo:
Lexica and terminology databases play a vital role in many NLP applications, but currently most such resources are published in application-specific formats, or with custom access interfaces, leading to the problem that much of this data is in ‘‘data silos’’ and hence difficult to access. The Semantic Web and in particular the Linked Data initiative provide effective solutions to this problem, as well as possibilities for data reuse by inter-lexicon linking, and incorporation of data categories by dereferencable URIs. The Semantic Web focuses on the use of ontologies to describe semantics on the Web, but currently there is no standard for providing complex lexical information for such ontologies and for describing the relationship between the lexicon and the ontology. We present our model, lemon, which aims to address these gaps
Resumo:
Semantic Web aims to allow machines to make inferences using the explicit conceptualisations contained in ontologies. By pointing to ontologies, Semantic Web-based applications are able to inter-operate and share common information easily. Nevertheless, multilingual semantic applications are still rare, owing to the fact that most online ontologies are monolingual in English. In order to solve this issue, techniques for ontology localisation and translation are needed. However, traditional machine translation is difficult to apply to ontologies, owing to the fact that ontology labels tend to be quite short in length and linguistically different from the free text paradigm. In this paper, we propose an approach to enhance machine translation of ontologies based on exploiting the well-structured concept descriptions contained in the ontology. In particular, our approach leverages the semantics contained in the ontology by using Cross Lingual Explicit Semantic Analysis (CLESA) for context-based disambiguation in phrase-based Statistical Machine Translation (SMT). The presented work is novel in the sense that application of CLESA in SMT has not been performed earlier to the best of our knowledge.
Resumo:
A novel algorithm based on bimatrix game theory has been developed to improve the accuracy and reliability of a speaker diarization system. This algorithm fuses the output data of two open-source speaker diarization programs, LIUM and SHoUT, taking advantage of the best properties of each one. The performance of this new system has been tested by means of audio streams from several movies. From preliminary results on fragments of five movies, improvements of 63% in false alarms and missed speech mistakes have been achieved with respect to LIUM and SHoUT systems working alone. Moreover, we also improve in a 20% the number of recognized speakers, getting close to the real number of speakers in the audio stream
Resumo:
In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology-Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.