931 resultados para Internet Security
Resumo:
Although there are many approaches for developing secure programs, they are not necessarily helpful for evaluating the security of a pre-existing program. Software metrics promise an easy way of comparing the relative security of two programs or assessing the security impact of modifications to an existing one. Most studies in this area focus on high level source code but this approach fails to take compiler-specific code generation into account. In this work we describe a set of object-oriented Java bytecode security metrics which are capable of assessing the security of a compiled program from the point of view of potential information flow. These metrics can be used to compare the security of programs or assess the effect of program modifications on security using a tool which we have developed to automatically measure the security of a given Java bytecode program in terms of the accessibility of distinguished ‘classified’ attributes.
Resumo:
We revisit the venerable question of access credentials management, which concerns the techniques that we, humans with limited memory, must employ to safeguard our various access keys and tokens in a connected world. Although many existing solutions can be employed to protect a long secret using a short password, those solutions typically require certain assumptions on the distribution of the secret and/or the password, and are helpful against only a subset of the possible attackers. After briefly reviewing a variety of approaches, we propose a user-centric comprehensive model to capture the possible threats posed by online and offline attackers, from the outside and the inside, against the security of both the plaintext and the password. We then propose a few very simple protocols, adapted from the Ford-Kaliski server-assisted password generator and the Boldyreva unique blind signature in particular, that provide the best protection against all kinds of threats, for all distributions of secrets. We also quantify the concrete security of our approach in terms of online and offline password guesses made by outsiders and insiders, in the random-oracle model. The main contribution of this paper lies not in the technical novelty of the proposed solution, but in the identification of the problem and its model. Our results have an immediate and practical application for the real world: they show how to implement single-sign-on stateless roaming authentication for the internet, in a ad-hoc user-driven fashion that requires no change to protocols or infrastructure.
Resumo:
For the past several decades, cryptographers have consistently provided us with stronger and more capable primitives and protocols that have found many applications in security systems in everyday life. One of the central tenets of cryptographic design is that, whereas a system’s architecture ought to be public and open to scrutiny, the keys on which it depends — long, utterly random, unique strings of bits — will be perfectly preserved by their owner, and yet nominally inaccessible to foes.
Resumo:
Since their introduction, the notions of indistinguishability and non-malleability have been changed and extended by different authors to support different goals. In this paper, we propose new flavors of these notions, investigate their relative strengths with respect to previous notions, and provide the full picture of relationships (i.e., implications and separations) among the security notions for public-key encryption schemes. We take into account the two general security goals of indistinguishability and non-malleability, each in the message space, key space, and hybrid message-key space to find six specific goals, a couple of them, namely complete indistinguishability and key non-malleability, are new. Then for each pair of goals, coming from the indistinguishability or non-malleability classes, we prove either an implication or a separation, completing the full picture of relationships among all these security notions. The implications and separations are respectively supported by formal proofs (i.e., reductions) in the concrete-security framework and by counterexamples.
Resumo:
Numeric set watermarking is a way to provide ownership proof for numerical data. Numerical data can be considered to be primitives for multimedia types such as images and videos since they are organized forms of numeric information. Thereby, the capability to watermark numerical data directly implies the capability to watermark multimedia objects and discourage information theft on social networking sites and the Internet in general. Unfortunately, there has been very limited research done in the field of numeric set watermarking due to underlying limitations in terms of number of items in the set and LSBs in each item available for watermarking. In 2009, Gupta et al. proposed a numeric set watermarking model that embeds watermark bits in the items of the set based on a hash value of the items’ most significant bits (MSBs). If an item is chosen for watermarking, a watermark bit is embedded in the least significant bits, and the replaced bit is inserted in the fractional value to provide reversibility. The authors show their scheme to be resilient against the traditional subset addition, deletion, and modification attacks as well as secondary watermarking attacks. In this paper, we present a bucket attack on this watermarking model. The attack consists of creating buckets of items with the same MSBs and determine if the items of the bucket carry watermark bits. Experimental results show that the bucket attack is very strong and destroys the entire watermark with close to 100% success rate. We examine the inherent weaknesses in the watermarking model of Gupta et al. that leave it vulnerable to the bucket attack and propose potential safeguards that can provide resilience against this attack.
Resumo:
Rakaposhi is a synchronous stream cipher, which uses three main components: a non-linear feedback shift register (NLFSR), a dynamic linear feedback shift register (DLFSR) and a non-linear filtering function (NLF). NLFSR consists of 128 bits and is initialised by the secret key K. DLFSR holds 192 bits and is initialised by an initial vector (IV). NLF takes 8-bit inputs and returns a single output bit. The work identifies weaknesses and properties of the cipher. The main observation is that the initialisation procedure has the so-called sliding property. The property can be used to launch distinguishing and key recovery attacks. The distinguisher needs four observations of the related (K,IV) pairs. The key recovery algorithm allows to discover the secret key K after observing 29 pairs of (K,IV). Based on the proposed related-key attack, the number of related (K,IV) pairs is 2(128 + 192)/4 pairs. Further the cipher is studied when the registers enter short cycles. When NLFSR is set to all ones, then the cipher degenerates to a linear feedback shift register with a non-linear filter. Consequently, the initial state (and Secret Key and IV) can be recovered with complexity 263.87. If DLFSR is set to all zeros, then NLF reduces to a low non-linearity filter function. As the result, the cipher is insecure allowing the adversary to distinguish it from a random cipher after 217 observations of keystream bits. There is also the key recovery algorithm that allows to find the secret key with complexity 2 54.
Resumo:
Most previous work on unconditionally secure multiparty computation has focused on computing over a finite field (or ring). Multiparty computation over other algebraic structures has not received much attention, but is an interesting topic whose study may provide new and improved tools for certain applications. At CRYPTO 2007, Desmedt et al introduced a construction for a passive-secure multiparty multiplication protocol for black-box groups, reducing it to a certain graph coloring problem, leaving as an open problem to achieve security against active attacks. We present the first n-party protocol for unconditionally secure multiparty computation over a black-box group which is secure under an active attack model, tolerating any adversary structure Δ satisfying the Q 3 property (in which no union of three subsets from Δ covers the whole player set), which is known to be necessary for achieving security in the active setting. Our protocol uses Maurer’s Verifiable Secret Sharing (VSS) but preserves the essential simplicity of the graph-based approach of Desmedt et al, which avoids each shareholder having to rerun the full VSS protocol after each local computation. A corollary of our result is a new active-secure protocol for general multiparty computation of an arbitrary Boolean circuit.
Resumo:
NTRUEncrypt is a fast and practical lattice-based public-key encryption scheme, which has been standardized by IEEE, but until recently, its security analysis relied only on heuristic arguments. Recently, Stehlé and Steinfeld showed that a slight variant (that we call pNE) could be proven to be secure under chosen-plaintext attack (IND-CPA), assuming the hardness of worst-case problems in ideal lattices. We present a variant of pNE called NTRUCCA, that is IND-CCA2 secure in the standard model assuming the hardness of worst-case problems in ideal lattices, and only incurs a constant factor overhead in ciphertext and key length over the pNE scheme. To our knowledge, our result gives the first IND-CCA2 secure variant of NTRUEncrypt in the standard model, based on standard cryptographic assumptions. As an intermediate step, we present a construction for an All-But-One (ABO) lossy trapdoor function from pNE, which may be of independent interest. Our scheme uses the lossy trapdoor function framework of Peikert and Waters, which we generalize to the case of (k − 1)-of-k-correlated input distributions.
Resumo:
The Remote Sensing Core Curriculum (RSCC) was initiated in 1993 to meet the demands for a college-level set of resources to enhance the quality of education across national and international campuses. The American Society of Photogrammetry and Remote Sensing adopted the RSCC in 1996 to sustain support of this educational initiative for its membership and collegiate community. A series of volumes, containing lectures, exercises, and data, is being created by expert contributors to address the different technical fields of remote sensing. The RSCC program is designed to operate on the Internet taking full advantage of the World Wide Web (WWW) technology for distance learning. The issues of curriculum development related to the educational setting, with demands on faculty, students, and facilities, is considered to understand the new paradigms for WWW-influenced computer-aided learning. The WWW is shown to be especially appropriate for facilitating remote sensing education with requirements for addressing image data sets and multimedia learning tools. The RSCC is located at http://www.umbc.edu/rscc. The Remote Sensing Core Curriculum (RSCC) was initiated in 1993 to meet the demands for a college-level set of resources to enhance the quality of education across national and international campuses. The American Society of Photogrammetry and Remote Sensing adopted the RSCC in 1996 to sustain support of this educational initiative for its membership and collegiate community. A series of volumes, containing lectures, exercises, and data, is being created by expert contributors to address the different technical fields of remote sensing. The RSCC program is designed to operate on the Internet taking full advantage of the World Wide Web (WWW) technology for distance learning. The issues of curriculum development related to the educational setting, with demands on faculty, students, and facilities, is considered to understand the new paradigms for WWW-influenced computer-aided learning. The WWW is shown to be especially appropriate for facilitating remote sensing education with requirements for addressing image data sets and multimedia learning tools. The RSCC is located at http://www.umbc.edu/rscc.
Resumo:
Espionage, surveillance and clandestine operations by secret agencies and governments were something of an East–West obsession in the second half of the twentieth century, a fact reflected in literature and film. In the twenty-first century, concerns of the Cold War and the threat of Communism have been rearticulated in the wake of 9/11. Under the rubric of ‘terror’ attacks, the discourses of security and surveillance are now framed within an increasingly global context. As this article illustrates, surveillance fiction written for young people engages with the cultural and political tropes that reflect a new social order that is different from the Cold War era, with its emphasis on spies, counter espionage, brainwashing and psychological warfare. While these tropes are still evident in much recent literature, advances in technology have transformed the means of tracking, profiling and accumulating data on individuals’ daily activities. Little Brother, The Hunger Games and Article 5 reflect the complex relationship between the real and the imaginary in the world of surveillance and, as this paper discusses, raise moral and ethical issues that are important questions for young people in our age of security.
Resumo:
The invention of asymmetric encryption back in the seventies was a conceptual leap that vastly increased the expressive power of encryption of the times. For the first time, it allowed the sender of a message to designate the intended recipient in an cryptographic way, expressed as a “public key” that was related to but distinct from the “private key” that, alone, embodied the ability to decrypt. This made large-scale encryption a practical and scalable endeavour, and more than anything else—save the internet itself—led to the advent of electronic commerce as we know and practice it today.
Resumo:
This paper makes a formal security analysis of the current Australian e-passport implementation using model checking tools CASPER/CSP/FDR. We highlight security issues in the current implementation and identify new threats when an e-passport system is integrated with an automated processing system like SmartGate. The paper also provides a security analysis of the European Union (EU) proposal for Extended Access Control (EAC) that is intended to provide improved security in protecting biometric information of the e-passport bearer. The current e-passport specification fails to provide a list of adequate security goals that could be used for security evaluation. We fill this gap; we present a collection of security goals for evaluation of e-passport protocols. Our analysis confirms existing security weaknesses that were previously identified and shows that both the Australian e-passport implementation and the EU proposal fail to address many security and privacy aspects that are paramount in implementing a secure border control mechanism. ACM Classification C.2.2 (Communication/Networking and Information Technology – Network Protocols – Model Checking), D.2.4 (Software Engineering – Software/Program Verification – Formal Methods), D.4.6 (Operating Systems – Security and Privacy Protection – Authentication)
Resumo:
In this article, we study the security of the IDEA block cipher when it is used in various simple-length or double-length hashing modes. Even though this cipher is still considered as secure, we show that one should avoid its use as internal primitive for block cipher based hashing. In particular, we are able to generate instantaneously free-start collisions for most modes, and even semi-free-start collisions, pseudo-preimages or hash collisions in practical complexity. This work shows a practical example of the gap that exists between secret-key and known or chosen-key security for block ciphers. Moreover, we also settle the 20-year-old standing open question concerning the security of the Abreast-DM and Tandem-DM double-length compression functions, originally invented to be instantiated with IDEA. Our attacks have been verified experimentally and work even for strengthened versions of IDEA with any number of rounds.
Resumo:
E-mail spam has remained a scourge and menacing nuisance for users, internet and network service operators and providers, in spite of the anti-spam techniques available; and spammers are relentlessly circumventing these anti-spam techniques embedded or installed in form of software products on both client and server sides of both fixed and mobile devices to their advantage. This continuous evasion degrades the capabilities of these anti-spam techniques as none of them provides a comprehensive reliable solution to the problem posed by spam and spammers. Major problem for instance arises when these anti-spam techniques misjudge or misclassify legitimate emails as spam (false positive); or fail to deliver or block spam on the SMTP server (false negative); and the spam passes-on to the receiver, and yet this server from where it originates does not notice or even have an auto alert service to indicate that the spam it was designed to prevent has slipped and moved on to the receiver’s SMTP server; and the receiver’s SMTP server still fail to stop the spam from reaching user’s device and with no auto alert mechanism to inform itself of this inability; thus causing a staggering cost in loss of time, effort and finance. This paper takes a comparative literature overview of some of these anti-spam techniques, especially the filtering technological endorsements designed to prevent spam, their merits and demerits to entrench their capability enhancements, as well as evaluative analytical recommendations that will be subject to further research.