991 resultados para Internal waves.
Resumo:
The determination of the composition and structure of the Earth’s inner core has long been the major subject in the study of the Earth’s deep interior. It’s widely believed that the Earth’s core is formed by iron with a fraction of nickel. However, light elements must exist in the inner core because the earth core is less dense than pure iron-nickel alloy (~2-3% in the solid inner core and ~6-7% in the liquid outer core). The questions are what and how much light element is there in the iron-nickel alloy. Besides the composition, the crystal structure of the iron with or without light element is also not well known. According to the seismological observations, the sound waves propagate 3-4% faster along the spin axis than in the equatorial plane. That means the inner core is anisotropic. The densest structure of iron-nickel alloy should be h.c.p structure under the very high pressures. However, the h,c,p structure does not propagate waves anisotropic ally. Then what is the structure of the iron-nickel alloy or the iron-nickle-light element alloy. In this study, we tried to predict the composition and the structure of the inner core through ab initio calculation of the Gibbs free energy, which is a function of internal energy, density and entropy. We conclude that the h.c.p structure is more stable than the b.c.c structure under high pressure and 0 K, but with the increase of temperature, the free energy of the b.c.c structure is decreasing much faster than the h.c.p structure caused by the vibration of the atomics, so the b.c.c structure is more stable at high temperatures. With the addition of light elements (S or Si or both), the free energy of b.c.c. decreases even faster, about 3at% of Si not only explains why the inner core is about 2-3 % lighter than the iron-nickle alloy, but also reasons why the inner core is anisotropic, since the b.c.c. structure becomes more stable than the h.c.p structure at 5500-6000K and b.c.c. is anisotropic in propagating seismic waves. Therefore, we infer that the inner core of the earth is formed by b.c.c iron and a fraction of nickel plus ~3at.% Si, with a temperature higher than 5500K, which is consistent with the studies from other approaches.
Resumo:
Large earthquakes, such as the Chile earthquake in 1960 and the Sumatra-Andaman earthquake on Dec 26, 2004 in Indonesia, have generated the Earth’s free oscillations. The eigenfrequencies of the Earth’s free oscillations are closely related to the Earth’s internal structures. The conventional methods, which mainly focus on calculating the eigenfrequecies by analytical ways, and the analysis on observations can not easily study the whole processes from earthquake occurrence to the Earth’s free oscillation inspired. Therefore, we try to use numerical method incorporated with large-scale parallel computing to study on the Earth’s free oscillations excited by giant earthquakes. We first give a review of researches and developments of the Earth’s free oscillation, and basical theories under spherical coordinate system. We then give a review of the numerical simulation of seismic wave propagation and basical theories of spectral element method to simulate global seismic wave propagation. As a first step to study the Earth’s free oscillations, we use a finite element method to simulate the propagation of elastic waves and the generation of oscillations of the chime bell of Marquis Yi of Zeng, by striking different parts of the bell, which possesses the oval crosssection. The bronze chime bells of Marquis Yi of Zeng are precious cultural relics of China. The bells have a two-tone acoustic characteristic, i.e., striking different parts of the bell generates different tones. By analysis of the vibration in the bell and the spectrum analysis, we further help the understanding of the mechanism of two-tone acoustic characteristics of the chime bell of Marquis Yi of Zeng. The preliminary calculations have clearly shown that two different modes of oscillation can be generated by striking different parts of the bell, and indicate that finite element numerical simulation of the processes of wave propagation and two-tone generation of the chime bell of Marquis Yi of Zeng is feasible. These analyses provide a new quantitative and visual way to explain the mystery of the two-tone acoustic characteristics. The method suggested by this study can be applied to simulate free oscillations excited by great earthquakes with complex Earth structure. Taking into account of such large-scale structure of the Earth, small-scale low-precision numerical simulation can not simply meet the requirement. The increasing capacity in high-performance parallel computing and progress on fully numerical solutions for seismic wave fields in realistic three-dimensional spherical models, Spectral element method and high-performance parallel computing were incorporated to simulate the seismic wave propagation processes in the Earth’s interior, without the effects of the Earth’s gravitational potential. The numerical simulation shows that, the results of the toroidal modes of our calculation agree well with the theoretical values, although the accuracy of our results is much limited, the calculated peaks are little distorted due to three-dimensional effects. There exist much great differences between our calculated values of spheroidal modes and theoretical values, because we don’t consider the effect the Earth’ gravitation in numerical model, which leads our values are smaller than the theoretical values. When , is much smaller, the effect of the Earth’s gravitation make the periods of spheroidal modes become shorter. However, we now can not consider effects of the Earth’s gravitational potential into the numerical model to simulate the spheroidal oscillations, but those results still demonstrate that, the numerical simulation of the Earth’s free oscillation is very feasible. We make the numerical simulation on processes of the Earth’s free oscillations under spherically symmetric Earth model using different special source mechanisms. The results quantitatively show that Earth’s free oscillations excited by different earthquakes are different, and oscillations at different locations are different for free oscillation excited by the same earthquake. We also explore how the Earth’s medium attenuation will take effects on the Earth’s free oscillations, and take comparisons with the observations. The medium attenuation can make influences on the Earth’s free oscillations, though the effects on lower-frequency fundamental oscillations are weak. At last, taking 2008 Wenchuan earthquake for example, we employ spectral element method incorporated with large-scale parallel computing technology to investigate the characteristics of seismic wave propagation excited by Wenchuan earthquake. We calculate synthetic seismograms with one-point source model and three-point source model respectively. Full 3-D visualization of the numerical results displays the profile of the seismic wave propagation with respect to time. The three-point source, which was proposed by the latest investigations through field observation and reverse estimation, can better demonstrate the spatial and temporal characteristics of the source rupture processes than one-point source. Primary results show that those synthetic signals calculated from three-point source agree well with the observations. This can further reveal that the source rupturing process of Wenchuan earthquake is a multi-rupture process, which is composed by at least three or more stages of rupture processes. In conclusion, the numerical simulation can not only solve some problems concluding the Earth’s ellipticity and anisotropy, which can be easily solved by conventional methods, but also finally solve the problems concluding topography model and lateral heterogeneity. We will try to find a way to fully implement self-gravitation in spectral element method in future, and do our best to continue researching the Earth’s free oscillations using the numerical simulations to see how the Earth’ lateral heterogeneous will affect the Earth’s free oscillations. These will make it possible to bring modal spectral data increasingly to bear on furthering our understanding of the Earth’s three-dimensional structure.
Resumo:
Huelse, M., Wischmann, S., Manoonpong, P., Twickel, A.v., Pasemann, F.: Dynamical Systems in the Sensorimotor Loop: On the Interrelation Between Internal and External Mechanisms of Evolved Robot Behavior. In: M. Lungarella, F. Iida, J. Bongard, R. Pfeifer (Eds.) 50 Years of Artificial Intelligence, LNCS 4850, Springer, 186 - 195, 2007.
Resumo:
Jackson, R. (2005). Internal War, International Mediation and Non-Official Diplomacy: Lessons from Mozambique. Journal of Conflict Studies. 25(1), pp.153-76 RAE2008
Resumo:
Jenkins, Tudor; Brieva, A.C.; Jones, D.G.; Evans, D.A., (2006) 'Internal structure of copper(II)-phthalocyanine thin films on SiO2/Si substrates investigated by grazing incidence x-ray reflectometry', Journal of Applied Physics 99 pp.73504 RAE2008
Resumo:
Li, Xing, Habbal, S. R., 'Coronal loops heated by turbulence-driven Alfven waves', The Astrophysical Journal, (2003) 598(2) pp.L125-L128 RAE2008
Resumo:
Li, Xing; Lu, Q. M.; Li, B., 'Ion Pickup by Finite Amplitude Parallel Propagating Alfven Waves', The Astrophysical Journal Letters (2007) 661(1) pp.L105-L108 RAE2008
Resumo:
The text addresses the issue of information security as exemplified by clandestine collaboration and the influence exerted by the Internal Security Agency officers upon journalists. The texts analyzes the de lege lata regulations as well as the de lege ferenda ones. As for the former, the penal provisions of the Act, that is Articles 153b–153d (Chapter 10a) are applicable, whereas as for the latter, the applicable regulations are the 2013 Bill Articles numbered 197-199 (Chapter 10). In both the 2002 Act on the Internal Security Agency and Foreign Intelligence Agency as well as in the 2013 draft Bill of the Internal Security Agency, the legislator penalizes the employment by the officers of the information acquired while fulfilling or in connection with official duties for the purpose of affecting the operation of public authority bodies, entrepreneurs or broadcasters, editors-in-chief, journalists and persons conducting publishing activity. Also, the text analyzes regulations concerned with the penalization of clandestine collaboration engaged in by ABW officers with a broadcaster, editor-in-chief, a journalist and a person conducting publishing activity.
Resumo:
In this thesis we relate the formal description of various cold atomic systems in the energy eigenbasis, to the observable spatial mode dynamics. Herein the `spatial mode dynamics' refers to the direction of photon emission following the spontaneous emission of an excited fermion in the presence of a same species and spin ideal anisotropic Fermi sea in its internal ground state. Due to the Pauli principle, the presence of the ground state Fermi sea renders the phase space, anisotropic and only partially accessible, thereby a ecting the direction of photon emission following spontaneous emission. The spatial and energetic mode dynamics also refers to the quantum `tunneling' interaction between localised spatial modes, synonymous with double well type potentials. Here we relate the dynamics of the wavefunction in both the energetic and spatial representations. Using this approach we approximate the relationship between the spatial and energetic representations of a wavefunction spanning three spatial and energetic modes. This is extended to a process known as Spatial Adiabatic Passage, which is a technique to transport matter waves between localised spatial modes. This approach allows us to interpret the transport of matter waves as a signature of a geometric phase acquired by the one of the internal energy eigenstates of the system during the cyclical evolution. We further show that this geometric phase may be used to create spatial mode qubit and qutrit states.
Resumo:
An Impressionistic piece. Dance of the Waves uses and expansive structure (A, A2, B, A2, Solos, D, C2, D). The piece is an atmospheric soundscape which evokes imagery of the ocean.
Resumo:
It has long been recognized that whistler-mode waves can be trapped in plasmaspheric whistler ducts which guide the waves. For nonguided cases these waves are said to be "nonducted", which is dominant for L < 1.6. Wave-particle interactions are affected by the wave being ducted or nonducted. In the field-aligned ducted case, first-order cyclotron resonance is dominant, whereas nonducted interactions open up a much wider range of energies through equatorial and off-equatorial resonance. There is conflicting information as to whether the most significant particle loss processes are driven by ducted or nonducted waves. In this study we use loss cone observations from the DEMETER and POES low-altitude satellites to focus on electron losses driven by powerful VLF communications transmitters. Both satellites confirm that there are well-defined enhancements in the flux of electrons in the drift loss cone due to ducted transmissions from the powerful transmitter with call sign NWC. Typically, ∼80% of DEMETER nighttime orbits to the east of NWC show electron flux enhancements in the drift loss cone, spanning a L range consistent with first-order cyclotron theory, and inconsistent with nonducted resonances. In contrast, ∼1% or less of nonducted transmissions originate from NPM-generated electron flux enhancements. While the waves originating from these two transmitters have been predicted to lead to similar levels of pitch angle scattering, we find that the enhancements from NPM are at least 50 times smaller than those from NWC. This suggests that lower-latitude, nonducted VLF waves are much less effective in driving radiation belt pitch angle scattering. Copyright 2010 by the American Geophysical Union.