847 resultados para Indian waters
Resumo:
Topex/Poseidon sea surface height anomalies during 1993-2002 are decomposed using 2-D finite impulse response filters which showed biannual Rossby waves (BRWs) in the equatorial Indian Ocean (peak at 1.5 degrees S) and in the southern tropical Indian Ocean (peak at 10.5 degrees S) during Indian Ocean Dipole (IOD) years. Anomalous downwelling BRWs in the equatorial Indian Ocean triggered by the wind stress curl-induced Ekman pumping near the eastern boundary started propagating westward from the eastern boundary in July/August 1993 and 1996, i.e., more than one year prior to the formation of the IOD events of 1994 and 1997 respectively. These strong downwelling signals reach the western equatorial Indian Ocean during the peak dipole time.
Resumo:
Stable isotopes, tritium, radium isotopes, radon, trace elements and nutrients data were collected during two sampling campaigns in the Ubatuba coastal area (south-eastern Brazil) with the aim of investigating submarine groundwater discharge (SGD) in the region. The isotopic composition (delta D, delta(18)O, (3)H) of submarine waters was characterised by significant variability and heavy isotope enrichment. The stable isotopes and tritium data showed good separation of groundwater and seawater groups. The contribution of groundwater in submarine waters varied from a few % to 17%. Spatial distribution of (222)Rn activity concentration in surface seawater revealed changes between 50 and 200 Bq m(-3) which were in opposite relationship with observed salinities. Time series measurements of (222)Rn activity concentration in Flamengo Bay (from 1 to 5 kBq m(-3)), obtained by in situ underwater gamma-spectrometry showed a negative correlation between the (222)Rn activity concentration and tide/salinity. This may be caused by sea level changes as tide effects induce variations of hydraulic gradients, which increase (222)Rn concentration during lower sea level, and opposite, during high tides where the (222)Rn activity concentration is smaller. The estimated SGD fluxes varied during 22-26 November between 8 and 40 cm d(-1), with an average value of 21 cm d(-1) (the unit is cm(3)/cm(2) per day). The radium isotopes and nutrient data showed scattered distributions with offshore distance and salinity. which implies that in a complex coast with many small bays and islands, the area has been influenced by local currents and groundwater-seawater mixing. SGD in the Ubatuba area is fed by coastal contaminated groundwater and re-circulated seawater (with small admixtures of groundwater). which claims for potential environmental concern with implications on the management of freshwater resources in the region. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this study we examine the impact of Indian Ocean sea surface temperature (SST) variability on South American circulation using observations and a suite of numerical experiments forced by a combination of Indian and Pacific SST anomalies. Previous studies have shown that the Indian Ocean Dipole (IOD) mode can affect climate over remote regions across the globe, including over South America. Here we show that such a link exists not only with the IOD, but also with the Indian Ocean basin-wide warming (IOBW). The IOBW, a response to El Nino events, tends to reinforce the South American anomalous circulation in March-to-May associated with the warm events in the Pacific. This leads to increased rainfall in the La Plata basin and decreased rainfall over the northern regions of the continent. In addition, the IOBW is suggested to be an important factor for modulating the persistence of dry conditions over northeastern South America during austral autumn. The link between the IOBW and South American climate occurs via alterations of the Walker circulation pattern and through a mid-latitude wave-train teleconnection.
Resumo:
The paleoclimate version of the National Center for Atmospheric Research Community Climate System Model version 3 (NCAR-CCSM3) is used to analyze changes in the water formation rates in the Atlantic, Pacific, and Indian Oceans for the Last Glacial Maximum (LGM), mid-Holocene (MH) and pre-industrial (PI) control climate. During the MH, CCSM3 exhibits a north-south asymmetric response of intermediate water subduction changes in the Atlantic Ocean, with a reduction of 2 Sv in the North Atlantic and an increase of 2 Sv in the South Atlantic relative to PI. During the LGM, there is increased formation of intermediate water and a more stagnant deep ocean in the North Pacific. The production of North Atlantic Deep Water (NADW) is significantly weakened. The NADW is replaced in large extent by enhanced Antarctic Intermediate Water (AAIW), Glacial North Atlantic Intermediate Water (GNAIW), and also by an intensified of Antarctic Bottom Water (AABW), with the latter being a response to the enhanced salinity and ice formation around Antarctica. Most of the LGM intermediate/mode water is formed at 27.4 < sigma(theta) < 29.0 kg/m(3), while for the MH and PI most of the subduction transport occurs at 26.5 < sigma(theta) < 27.4 kg/m(3). The simulated LGM Southern Hemisphere winds are more intense by 0.2-0.4 dyne/cm(2). Consequently, increased Ekman transport drives the production of intermediate water (low salinity) at a larger rate and at higher densities when compared to the other climatic periods.
Resumo:
Background: Bugula is a speciose genus of marine bryozoans, represented by both endemic and cosmopolitan species distributed in tropical and temperate waters and important to marine biologists because of the occurrence of many species in harbor and fouling communities, therefore as potential invaders. The southeastern Brazilian coast in the southern Atlantic hosts the highest known diversity of the genus, a status intimately associated with the intensity of collecting efforts. Methodology: Morphological data based on the examination of living specimens, scanning electron and light microscopic images, and morphometric analyses were used to assess the diversity of Bugula along the coastal areas of southern, northeastern, and southeastern Brazil. In this study, morphological species boundaries were based mainly on avicularian characters. For two morphologically very similar species, boundaries are partially supported by 16 S rDNA molecular data. Results: Nine species are newly described from Brazil, as follows: Bugula bowiei n. sp. (= Bugula turrita sensu Marcus, 1937) from the southern, northeastern, and southeastern coasts; Bugula foliolata n. sp. (= Bugula flabellata sensu Marcus, 1938), Bugula guara n. sp., Bugula biota n. sp. and Bugula ingens n. sp from the southeastern coast; Bugula gnoma n. sp. and Bugula alba n. sp. from the northeastern coast; Bugula rochae n. sp. (= Bugula uniserialis sensu Marcus, 1937) from the southern coast; and Bugula migottoi n. sp., from the southeastern and southern coasts. Conclusion: The results contribute to the morphological characterization and the knowledge of the species richness of the genus in the southwestern Atlantic (i.e., Brazil), through the description of new species in poorly sampled areas and also on the southeastern coast of that country. Additionally, the taxonomic status of the Brazilian specimens attributed to B. flabellata, B. turrita and B. uniserialis are clarified by detailed studies on zooidal and avicularia morphology.
Resumo:
Crepidomanes minutum (Hymenophyllaceae) is here identified and recorded from Mauritius for the first time. The Mauritian specimens, in addition to those of La Reunion observed at low to middle elevations, are easily distinguished from populations observed outside the Mascarene Archipelago by their dwarfed size and rarity of the stipe proliferation that usually characterizes this species. We thus describe a new variety in this species for the Mascarene Islands.
Resumo:
In this manuscript, an automatic setup for screening of microcystins in surface waters by employing photometric detection is described. Microcystins are toxins delivered by cyanobacteria within an aquatic environment, which have been considered strongly poisonous for humans. For that reason, the World Health Organization (WHO) has proposed a provisional guideline value for drinking water of 1 mu g L-1. In this work, we developed an automated equipment setup, which allows the screening of water for concentration of microcystins below 0.1 mu g V. The photometric method was based on the enzyme-linked immunosorbent assay (ELISA) and the analytical signal was monitored at 458 nm using a homemade LED-based photometer. The proposed system was employed for the detection of microcystins in rivers and lakes waters. Accuracy was assessed by processing samples using a reference method and applying the paired t-test between results. No significant difference at the 95% confidence level was observed. Other useful features including a linear response ranging from 0.05 up to 2.00 mu g L-1 (R-2 =0.999) and a detection limit of 0.03 mu g L-1 microcystins were achieved. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min(-1) for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H2O2 concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A new species, Ruffojassa petronioi sp. nov., is described from southern Brazilian coast. The new species was collected at 56 m depth at the coordinates 21º42'S / 40º15'W with a mini biological trawl aboard of R.V. Prof.W.Besnard. In this paper we recorded the genus for the first time from Brazilian waters.
Resumo:
Purpose To describe an extremely uncommon outbreak of eye lesions in a specific area of the Brazilian Amazonia. Methods Prospective noncomparative case series. Fifty-nine patients who developed eye lesions after swimming in the Araguaia river of Tocantins state in Brazil were examined. A team of ophthalmologists equipped with a slit-lamp, gonioscopic lenses, and indirect ophthalmoscopy performed full eye examination. Analysis of the flora and fauna of the river water was undertaken by a group of experts. Results and Conclusions Eighty-three eyes were affected. The most common lesions were corneal opacities seen in 34 eyes and conjunctival nodules diagnosed in 12 eyes. Severe visual acuity loss was detected in seven children with unilateral anterior chamber lesions. Spicules of the sponge species Drulia uruguayensis and Drulia ctenosclera were found inside three blind eyes that have been enucleated for diagnostic purposes. All eye lesions could be attributed to an outbreak of foreign bodies from fresh water sponges. Organic enrichment of the water resulting from the absence of sanitation probably was the key factor, which initiated a cycle of ecological imbalance that provoked human disease.
Resumo:
The spectral reflectance of the sea surface recorded using ocean colour satellite sensors has been used to estimate chlorophyll-a concentrations for decades. However, in bio-optically complex coastal waters, these estimates are compromised by the presence of several other coloured components besides chlorophyll, especially in regions affected by low-salinity waters. The present work aims to (a) describe the influence of the freshwater plume from the La Plata River on the variability of in situ remote sensing reflectance and (b) evaluate the performance of operational ocean colour chlorophyll algorithms applied to Southwestern Atlantic waters, which receive a remarkable seasonal contribution from La Plata River discharges. Data from three oceanographic cruises are used, in addition to a historical regional bio-optical dataset. Deviations found between measured and estimated concentrations of chlorophyll-a are examined in relation to surface water salinity and turbidity gradients to investigate the source of errors in satellite estimates of pigment concentrations. We observed significant seasonal variability in surface reflectance properties that are strongly driven by La Plata River plume dynamics and arise from the presence of high levels of inorganic suspended solids and coloured dissolved materials. As expected, existing operational algorithms overestimate the concentration of chlorophyll-a, especially in waters of low salinity (S<33.5) and high turbidity (Rrs(670)>0.0012 sr−1). Additionally, an updated version of the regional algorithm is presented, which clearly improves the chlorophyll estimation in those types of coastal environment. In general, the techniques presented here allow us to directly distinguish the bio-optical types of waters to be considered in algorithm studies by the ocean colour community.
Resumo:
Intense phytoplankton blooms were observed along the Patagonian shelf-break with satellite ocean color data, but few in situ optical observations were made in that region. We examine the variability of phytoplankton absorption and particulate scattering coefficients during such blooms on the basis of field data. The chlorophyll-a concentration, [Chla], ranged from 0.1 to 22.3 mg m−3 in surface waters. The size fractionation of [Chla] showed that 80% of samples were dominated by nanophytoplankton (N-group) and 20% by microphytoplankton (M-group). Chlorophyll-specific phytoplankton absorption coefficients at 440 and 676 nm, a*ph(440) and a*ph(676), and particulate scattering coefficient at 660 nm, b*p(660), ranged from 0.018 to 0.173, 0.009 to 0.046, and 0.031 to 2.37 m2 (mg Chla)−1, respectively. Both a*ph(440) and a*ph(676) were statistically higher for the N-group than M-group and also considerably higher than expected from global trends as a function of [Chla]. This result suggests that size of phytoplankton cells in Patagonian waters tends to be smaller than in other regions at similar [Chla]. The phytoplankton cell size parameter, Sf, derived from phytoplankton absorption spectra, proved to be useful for interpreting the variability in the data around the general inverse dependence of a*ph(440), a*ph(676), and b*p(660) on [Chla]. Sf also showed a pattern along the increasing trend of a*ph(440) and a*ph(676) as a function of the ratios of some accessory pigments to [Chla]. Our results suggest that the variability in phytoplankton absorption and scattering coefficients in Patagonian waters is caused primarily by changes in the dominant phytoplankton cell size accompanied by covariation in the concentrations of accessory pigments.
Resumo:
This study is concerned with speciation and fractionation of the rare earth elements (REE) and calcium (Ca) in aqueous solutions. The aim is to investigate the chemical states and physical sizes in which these elements can be present. The REE (including neodymium) and Ca have contrasting geochemical behavior in aqueous solutions. Ca is a major dissolved element, while the REE are trace components and highly reactive with aquatic particles. The major interests of the five papers included in this thesis are the following: · Papers I and V deal with the behavior of neodymium (Nd) and its isotopes in the Kalix River and some marine waters. · The diffusive gradients in thin-films (DGT) method is developed for measuring Ca and Mg in Paper II. · Paper III presents a speciation and fractionation study of Ca in the Kalix and Amazonian rivers. · The rare earth elements and their carrier phases are investigated in the Kalix river in Paper IV. For most elements a detailed study of speciation and fractionation can not be performed using only one method. This is due to the overall heterogeneity of the material, considering both size and chemical composition, which is present in aquatic solutions. During this project the aquatic geochemistry of the REE and Ca has been studied using mainly three methods; cross-flow filtration (CFF), field-flow fractionation (FFF) and diffusive gradients in thin-films (DGT). Field work has to a large part been conducted in the Kalix River, in northern Sweden, which is one of the last pristine river systems in Europe. Some field work has also been conducted in the Baltic Sea and the Arctic Ocean. Results from Amazonian rivers are also presented. These are the main conclusions from this work: The DGT technique works equally well for measuring Ca and Mg in natural waters as previously reported for trace metal. A significant colloidal phase for Ca could be detected in the Kalix River and in different Amazonian rivers. This was concluded independently using both CFF and FFF. Variations in REE signatures in the Kalix River suggests two different pathways for the REE during weathering and release form soil profiles and transport in the river. No significant variation in Nd-isotopic composition could be detected in the Kalix River although concentrations varied by a factor of ~10. This suggests that there is one major source for Nd in the river although different pathways for the REE may exist. A study of Nd in the Kalix River, the Baltic Sea and the Arctic Ocean showed that the isotopic compositions in the diffusible fractions were similar to water samples. However, the relative amount of diffusible Nd increased with salinity, probably reflecting the lower concentration of colloidal and particulate material in marine waters.