990 resultados para IR evaluation
Resumo:
Introduction The Skin Self-Examination Attitude Scale (SSEAS) is a brief measure that allows for the assessment of attitudes in relation to skin self-examination. This study evaluated the psychometric properties of the SSEAS using Item Response Theory (IRT) methods in a large sample of men ≥ 50 years in Queensland, Australia. Methods A sample of 831 men (420 intervention and 411 control) completed a telephone assessment at the 13-month follow-up of a randomized-controlled trial of a video-based intervention to improve skin self-examination (SSE) behaviour. Descriptive statistics (mean, standard deviation, item–total correlations, and Cronbach’s alpha) were compiled and difficulty parameters were computed with Winsteps using the polytomous Rasch Rating Scale Model (RRSM). An item person (Wright) map of the SSEAS was examined for content coverage and item targeting. Results The SSEAS have good psychometric properties including good internal consistency (Cronbach’s alpha = 0.80), fit with the model and no evidence for differential item functioning (DIF) due to experimental trial grouping was detected. Conclusions The present study confirms the SSEA scale as a brief, useful and reliable tool for assessing attitudes towards skin self-examination in a population of men 50 years or older in Queensland, Australia. The 8-item scale shows unidimensionality, allowing levels of SSE attitude, and the item difficulties, to be ranked on a single continuous scale. In terms of clinical practice, it is very important to assess skin cancer self-examination attitude to identify people who may need a more extensive intervention to allow early detection of skin cancer.
Resumo:
This work explored the applicability of electrocoagulation (EC) using aluminium electrodes for the removal of contaminants which can scale and foul reverse osmosis membranes from a coal seam (CS) water sample, predominantly comprising sodium chloride, and sodium bicarbonate. In general, the removal efficiency of species responsible for scaling and fouling was enhanced by increasing the applied current density/voltage and contact times (30–60 s) in the EC chamber. High removal efficiencies of species potentially responsible for scale formation in reverse osmosis units such as calcium (100%), magnesium (87.9%), strontium (99.3%), barium (100%) and silicates (98.3%) were achieved. Boron was more difficult to eliminate (13.3%) and this was postulated to be due to the elevated solution pH. Similarly, fluoride removal from solution (44%) was also inhibited by the presence of hydroxide ions in the pH range 9–10. Analysis of produced flocs suggested the dominant presence of relatively amorphous boehmite (AlOOH), albeit the formation of Al(OH)3 was not ruled out as the drying process employed may have converted aluminium hydroxide to aluminium oxyhydroxide species. Evidence for adsorption of contaminants on floc surface sites was determined from FTIR studies. The quantity of aluminium released during the electrocoagulation process was higher than the Faradaic amount which suggested that the high salt concentrations in the coal seam water had chemically reacted with the aluminium electrodes.
Resumo:
Chlamydia pecorum is globally associated with several ovine diseases including keratoconjunctivitis and polyarthritis. The exact relationship between the variety of C. pecorum strains reported and the diseases described in sheep remains unclear, challenging efforts to accurately diagnose and manage infected flocks. In the present study, we applied C. pecorum multi-locus sequence typing (MLST) to C. pecorum positive samples collected from sympatric flocks of Australian sheep presenting with conjunctivitis, conjunctivitis with polyarthritis, or polyarthritis only and with no clinical disease (NCD) in order to elucidate the exact relationships between the infecting strains and the range of diseases. Using Bayesian phylogenetic and cluster analyses on 62 C. pecorum positive ocular, vaginal and rectal swab samples from sheep presenting with a range of diseases and in a comparison to C. pecorum sequence types (STs) from other hosts, one ST (ST 23) was recognised as a globally distributed strain associated with ovine and bovine diseases such as polyarthritis and encephalomyelitis. A second ST (ST 69) presently only described in Australian animals, was detected in association with ovine as well as koala chlamydial infections. The majority of vaginal and rectal C. pecorum STs from animals with NCD and/or anatomical sites with no clinical signs of disease in diseased animals, clustered together in a separate group, by both analyses. Furthermore, 8/13 detected STs were novel. This study provides a platform for strain selection for further research into the pathogenic potential of C. pecorum in animals and highlights targets for potential strain-specific diagnostic test development.
Resumo:
Background Spatial analysis is increasingly important for identifying modifiable geographic risk factors for disease. However, spatial health data from surveys are often incomplete, ranging from missing data for only a few variables, to missing data for many variables. For spatial analyses of health outcomes, selection of an appropriate imputation method is critical in order to produce the most accurate inferences. Methods We present a cross-validation approach to select between three imputation methods for health survey data with correlated lifestyle covariates, using as a case study, type II diabetes mellitus (DM II) risk across 71 Queensland Local Government Areas (LGAs). We compare the accuracy of mean imputation to imputation using multivariate normal and conditional autoregressive prior distributions. Results Choice of imputation method depends upon the application and is not necessarily the most complex method. Mean imputation was selected as the most accurate method in this application. Conclusions Selecting an appropriate imputation method for health survey data, after accounting for spatial correlation and correlation between covariates, allows more complete analysis of geographic risk factors for disease with more confidence in the results to inform public policy decision-making.
Resumo:
BACKGROUND: Monitoring studies revealed high concentrations of pesticides in the drainage canal of paddy fields. It is important to have a way to predict these concentrations in different management scenarios as an assessment tool. A simulation model for predicting the pesticide concentration in a paddy block (PCPF-B) was evaluated and then used to assess the effect of water management practices for controlling pesticide runoff from paddy fields. RESULTS: The PCPF-B model achieved an acceptable performance. The model was applied to a constrained probabilistic approach using the Monte Carlo technique to evaluate the best management practices for reducing runoff of pretilachlor into the canal. The probabilistic model predictions using actual data of pesticide use and hydrological data in the canal showed that the water holding period (WHP) and the excess water storage depth (EWSD) effectively reduced the loss and concentration of pretilachlor from paddy fields to the drainage canal. The WHP also reduced the timespan of pesticide exposure in the drainage canal. CONCLUSIONS: It is recommended that: (1) the WHP be applied for as long as possible, but for at least 7 days, depending on the pesticide and field conditions; (2) an EWSD greater than 2 cm be maintained to store substantial rainfall in order to prevent paddy runoff, especially during the WHP.
Resumo:
Executive Summary Queensland University of Technology (QUT) was contracted to conduct an evaluation of an integrated chronic disease nurse practitioner service conducted at Meadowbrook Primary Care Practice. This evaluation is a collaborative project with nurse practitioners (NP) from Logan Hospital. The integrated chronic disease nurse practitioner service is an outpatient clinic for patients with two or more chronic diseases, including chronic kidney disease (CKD), heart failure (HF), diabetes (type I or II). This document reports on the first 12 months of the service (4th June, 2014 to 25th May, 2015). During this period: • 55 patients attended the NP clinic with 278 occasions of service provided • Almost all (95.7%) patients attended their scheduled appointments (only 4.3% did not attend an appointment) • Since attending the NP clinic, the majority of patients (77.6%) had no emergency department visits related to their chronic disease; only 3 required hospital admission. • 3 patients under the service were managed with Hospital In the Home which avoided more than 25 hospital bed days • 41 patients consented to join a prospective cohort study of patient-reported outcomes and patient satisfaction • 14 patient interviews and 3 stakeholder focus groups were also conducted to provide feedback on their perceptions of the NP-led service innovation. The report concludes with seven recommendations.
Resumo:
Anti-cancer drug loaded-nanoparticles (NPs) or encapsulation of NPs in colon-targeted delivery systems shows potential for increasing the local drug concentration in the colon leading to improved treatment of colorectal cancer. To investigate the potential of the NP-based strategies for colon-specific delivery, two formulations, free Eudragit® NPs and enteric-coated NP-loaded chitosan–hypromellose microcapsules (MCs) were fluorescently-labelled and their tissue distribution in mice after oral administration was monitored by multispectral small animal imaging. The free NPs showed a shorter transit time throughout the mouse digestive tract than the MCs, with extensive excretion of NPs in faeces at 5 h. Conversely, the MCs showed complete NP release in the lower region of the mouse small intestine at 8 h post-administration. Overall, the encapsulation of NPs in MCs resulted in a higher colonic NP intensity from 8 h to 24 h post-administration compared to the free NPs, due to a NP ‘guarding’ effect of MCs during their transit along mouse gastrointestinal tract which decreased NP excretion in faeces. These imaging data revealed that this widely-utilised colon-targeting MC formulation lacked site-precision for releasing its NP load in the colon, but the increased residence time of the NPs in the lower gastrointestinal tract suggests that it is still useful for localised release of chemotherapeutics, compared to NP administration alone. In addition, both formulations resided in the stomach of mice at considerable concentrations over 24 h. Thus, adhesion of NP- or MC-based oral delivery systems to gastric mucosa may be problematic for colon-specific delivery of the cargo to the colon and should be carefully investigated for a full evaluation of particulate delivery systems.
Resumo:
The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.
Resumo:
Animating Spaces 2013-14 Interim Report Artslink Queensland’s Animating Spaces initiative is a three-year statewide project (2013-2015) that aims to revitalise and celebrate non-traditional, significant, and unusual spaces within fifteen regional Queensland communities. After the completion of two years of Animating Spaces this is the first public interim report highlighting outcomes to date. A final evaluation report will be collated in early 2016 that will capture the Animating Spaces project in its entirety. Developed by Queensland University of Technology evaluation team, Professor Helen Klaebe and Dr. Elizabeth Ellison with the extraordinary assistance of Artslink Queensland staff, in particular Kerryanne Farrer.
Resumo:
This thesis successfully introduced the intellectual framework of immunology in the development of bone biomaterials. The project identified the regulatory role of biomaterials to the immune-response in terms of bone formation and healing of bone defects. The novel methods developed in the project will significantly change the ways of biomaterials assessment and evaluation.
Resumo:
Introduction & aims The demand for evidence of efficacy of treatments in general and orthopaedic surgical procedures in particular is ever increasing in Australia and worldwide. The aim of this study is to share the key elements of an evaluation framework recently implemented in Australia to determine the efficacy of bone-anchored prostheses. Method The proposed evaluation framework to determine the benefit and harms of bone-anchored prostheses for individuals with limb loss was extracted from a systematic review of the literature including seminal studies focusing on clinical benefits and safety of procedures involving screw-type implant (e.g., OPRA) and press-fit fixations (e.g., EEFT, ILP, OPL). [1-64] Results The literature review highlighted that a standard and replicable evaluation framework should focus on: • The clinical benefits with a systematic recording of health-related quality of life (e.g., SF-26, Q-TFA), mobility predictor (e.g., AMPRO), ambulation abilities (e.g., TUG, 6MWT), walking abilities (e.g., characteristic spatio-temporal) and actual activity level at baseline and follow-up post Stage 2 surgery, • The potential harms with systematic recording of residuum care, infection, implant stability, implant integrity, injuries (e.g., falls) after Stage 1 surgery. There was a general consensus around the instruments to monitor most of the benefits and harms. The benefits could be assessed using a wide spectrum of complementary assessments ranging from subjective patient self-reporting to objective measurements of physical activity. However, this latter was assessed using a broad range of measurements (e.g., pedometer, load cell, energy consumption). More importantly, the lack of consistent grading of infections was sufficiently noticeable to impede cross-fixation comparisons. Clearly, a more universal grading system is needed. Conclusions Investigators are encouraged to implement an evaluation framework featuring the domains and instruments proposed above using a single database to facilitate robust prospective studies about potential benefits and harms of their procedure. This work is also a milestone in the development of national and international clinical outcome registries.
Resumo:
Summary High bone mineral density on routine dual energy X-ray absorptiometry (DXA) may indicate an underlying skeletal dysplasia. Two hundred fifty-eight individuals with unexplained high bone mass (HBM), 236 relatives (41% with HBM) and 58 spouses were studied. Cases could not float, had mandible enlargement, extra bone, broad frames, larger shoe sizes and increased body mass index (BMI). HBM cases may harbour an underlying genetic disorder. Introduction High bone mineral density is a sporadic incidental finding on routine DXA scanning of apparently asymptomatic individuals. Such individuals may have an underlying skeletal dysplasia, as seen in LRP5 mutations. We aimed to characterize unexplained HBM and determine the potential for an underlying skeletal dysplasia. Methods Two hundred fifty-eight individuals with unexplained HBM (defined as L1 Z-score ≥ +3.2 plus total hip Z-score ≥ +1.2, or total hip Z-score ≥ +3.2) were recruited from 15 UK centres, by screening 335,115 DXA scans. Unexplained HBM affected 0.181% of DXA scans. Next 236 relatives were recruited of whom 94 (41%) had HBM (defined as L1 Z-score + total hip Z-score ≥ +3.2). Fifty-eight spouses were also recruited together with the unaffected relatives as controls. Phenotypes of cases and controls, obtained from clinical assessment, were compared using random-effects linear and logistic regression models, clustered by family, adjusted for confounders, including age and sex. Results Individuals with unexplained HBM had an excess of sinking when swimming (7.11 [3.65, 13.84], p < 0.001; adjusted odds ratio with 95% confidence interval shown), mandible enlargement (4.16 [2.34, 7.39], p < 0.001), extra bone at tendon/ligament insertions (2.07 [1.13, 3.78], p = 0.018) and broad frame (3.55 [2.12, 5.95], p < 0.001). HBM cases also had a larger shoe size (mean difference 0.4 [0.1, 0.7] UK sizes, p = 0.009) and increased BMI (mean difference 2.2 [1.3, 3.1] kg/m 2, p < 0.001). Conclusion Individuals with unexplained HBM have an excess of clinical characteristics associated with skeletal dysplasia and their relatives are commonly affected, suggesting many may harbour an underlying genetic disorder affecting bone mass.
Resumo:
Background: The vast majority of BRCA1 missense sequence variants remain uncharacterised for their possible effect on protein expression and function, and therefore are unclassified in terms of their pathogenicity. BRCA1 plays diverse cellular roles and it is unlikely that any single functional assay will accurately reflect the total cellular implications of missense mutations in this gene. Objective: To elucidate the effect of two BRCA1 variants, 5236G>C (G1706A) and 5242C>A (A1708E) on BRCA1 function, and to survey the relative usefulness of several assays to direct the characterisation of other unclassified variants in BRCA genes. Methods and Results: Data from a range of bioinformatic, genetic, and histopathological analyses, and in vitro functional assays indicated that the 1708E variant was associated with the disruption of different cellular functions of BRCA1. In transient transfection experiments in T47D and 293T cells, the 1708E product was mislocalised to the cytoplasm and induced centrosome amplification in 293T cells. The 1708E variant also failed to transactivate transcription of reporter constructs in mammalian transcriptional transactivation assays. In contrast, the 1706A variant displayed a phenotype comparable to wildtype BRCA1 in these assays. Consistent with functional data, tumours from 1708E carriers showed typical BRCA1 pathology, while tumour material from 1706A carriers displayed few histopathological features associated with BRCA1 related tumours. Conclusions: A comprehensive range of genetic, bioinformatic, and functional analyses have been combined for the characterisation of BRCA1 unclassified sequence variants. Consistent with the functional analyses, the combined odds of causality calculated for the 1706A variant after multifactorial likelihood analysis (1:142) indicates a definitive classification of this variant as "benign". In contrast, functional assays of the 1708E variant indicate that it is pathogenic, possibly through subcellular mislocalisation. However, the combined odds of 262:1 in favour of causality of this variant does not meet the minimal ratio of 1000:1 for classification as pathogenic, and A1708E remains formally designated as unclassified. Our findings highlight the importance of comprehensive genetic information, together with detailed functional analysis for the definitive categorisation of unclassified sequence variants. This combination of analyses may have direct application to the characterisation of other unclassified variants in BRCA1 and BRCA2.
Resumo:
Inventory Management (IM) plays a decisive role in the enhancement of efficiency and competitiveness of manufacturing enterprises. Therefore, major manufacturing enterprises are following IM practices as a strategy to improve efficiency and achieve competitiveness. However, the spread of IM culture among Small and Medium Enterprises (SMEs) is limited due to lack of initiation, expertise and financial limitations in developed countries, leave alone developing countries. With this backdrop, this paper makes an attempt to ascertain the role and importance of IM practices and performance of SMEs in the machine tools industry of Bangalore, India. The relationship between inventory management practices and inventory cost are probed based on primary data gathered from 91 SMEs. The paper brings out that formal IM practices have a positive impact on the inventory performance of SMEs.
Resumo:
Plasma sprayable powders were prepared from ZrO2-CaO-CeO2 system using an organic binder and coated onto stainless steel substrates previously coated by a bond coat (Ni 22Cr 20Al 1.0Y) using plasma spraying. The coatings exhibited good thermal barrier characteristics and excellent resistance to thermal shock at 1000 degrees C under simulated laboratory conditions (90 half hour cycles without failure) and at 1200 degrees C under accelerated burner rig test conditions (500 2 min cycles without failure). No destabilization of cubic/tetragonal ZrO2 phase fraction occured either during the long hours (45 h cumulative) or the large number of thermal shock tests. Growth of a distinct SiO2 rich region within the ceramic was observed in the specimens thermal shock cycled at 1000 degrees C apart from mild oxidation of the bond coat. The specimens tested at 1200 degrees C had a glassy appearance on the top surface and exhibited severe oxidation of the bond coat at the ceramic-bond coat interface. The glassy appearance of the surface is due to the formation of a liquid silicate layer attributable to the impurity phase present in commercial grade ZrO2 powder. These observations are supported by SEM analysis and quantitative EDAX data.