896 resultados para INTERFACIAL REACTION
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Castor oil bean cement (COB) is a new material that has been used as an endodontic sealer, and is a candidate material for direct pulp capping. Objective: The purpose of this study was to evaluate the biocompatibility of a new formulation of COB compared to calcium hydroxide cement (CH) and a control group without any material, in the subcutaneous tissue of rats. Material and Methods: The materials were prepared, packed into polyethylene tubes, and implanted in the rat dorsal subcutaneous tissue. Animals were sacrificed at the 7th and 50th days after implantation. A quantitative analysis of inflammatory cells was performed and data were subjected to ANOVA and Tukey's tests at 5% significance level. Results: Comparing the mean number of inflammatory cells between the two experimental groups (COB and CH) and the control group, statistically significant difference (p=0.0001) was observed at 7 and 50 days. There were no significant differences (p=0.111) between tissue reaction to CH (382 inflammatory cells) and COB (330 inflammatory cells) after 7 days. After 50 days, significantly more inflammatory cells (p=0.02) were observed in the CH group (404 inflammatory cells) than in the COB group (177 inflammatory cells). Conclusions: These results demonstrate that the COB cement induces less inflammatory response within long periods.
Resumo:
The paper presents the results of an experimental study of interfacial failure in a multilayered structure consisting of a dentin/resin cement/quartz-fiber reinforced composite (FRC). Slices of dentin close to the pulp chamber were sandwiched by two half-circle discs made of a quartz-fiber reinforced composite, bonded with bonding agent (All-bond 2, BISCO, Schaumburg) and resin cement (Duo-link. BISCO, Schaumburg) to make Brazil-nut sandwich specimens for interfacial toughness testing. Interfacial fracture toughness (strain energy release rate, G) was measured as a function of mode mixity by changing loading angles from 0 degrees to 15 degrees. The interfacial fracture surfaces were then examined using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) to determine the failure modes when loading angles changed. A computational model was also developed to calculate the driving forces, stress intensity factors and mode mixities. Interfacial toughness increased from approximate to 1.5 to 3.2 J/m(2) when the loading angle increases from approximate to 0, 0 to 15 degrees. The hybridized dentin/cement interface appeared to be tougher than the resin cement/quartz-fiber reinforced epoxy. The Brazil-nut sandwich specimen was a suitable method to investigate the mechanical integrity of dentin/cement/FRC interfaces. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objectives. To test the hypothesis that multiple firing and silica deposition on the zirconia surface influence the bond strength to porcelain.Materials and methods. Specimens were cut from yttria-stabilized zirconia blocks and sintered. Half of the specimens (group S) were silica coated (physical vapor deposition (PVD)) via reactive magnetron sputtering before porcelain veneering. The remaining specimens (group N) had no treatment before veneering. The contact angle before and after silica deposition was measured. Porcelain was applied on all specimens and submitted to two (N2 and S2) or three firing cycles (N3 and S3). The resulting porcelain-zirconia blocks were sectioned to obtain bar-shaped specimens with 1 mm(2) of cross-sectional area. Specimens were attached to a universal testing machine and tested in tension until fracture. Fractured surfaces were examined using optical microscopy. Data were statistically analyzed using two-way ANOVA, Tukey's test (alpha = 0.05) and Weibull analysis.Results. Specimens submitted to three firing cycles (N3 and S3) showed higher mean bond strength values than specimens fired twice (N2 and S2). Mean contact angle was lower for specimens with silica layer, but it had no effect on bond strength. Most fractures initiated at porcelain-zirconia interface and propagated through the porcelain.Significance. The molecular deposition of silica on the zirconia surface had no influence on bond strength to porcelain, while the number of porcelain firing cycles significantly affected the bond strength of the ceramic system, partially accepting the study hypothesis. Yet, the Weibull modulus values of S groups were significantly greater than the m values of N groups. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Direct muon transfer in low-energy collisions of the muonic hydrogen H-mu and helium (He++) is considered in a three-body quantum-mechanical framework of coordinate-space integro-differential Faddeev-Hahn-type equations within two- and six-state close coupling approximations. The final-state Coulomb interaction is treated without any approximation employing appropriate Coulomb waves in the final state. This procedure of treating Coulomb interaction leads to much improved results for low-energy transfer rates. The present results agree reasonably well with previous semiclassical calculations. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this paper, we investigate the invariance and integrability properties of an integrable two-component reaction-diffusion equation. We perform Painleve analysis for both the reaction-diffusion equation modelled by a coupled nonlinear partial differential equations and its general similarity reduced ordinary differential equation and confirm its integrability. Further, we perform Lie symmetry analysis for this model. Interestingly our investigations reveals a rich variety of particular solutions, which have not been reported in the literature, for this model. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This paper investigates the usefulness of the generator coordinate method (GCM) for treating the dynamics of a reaction coordinate coupled to a bath of harmonic degrees of freedom. Models for the unimolecular dissociation and isomerization process (proton transfer) are analyzed. The GCM results, presented in analytical form, provide a very good description and are compared to other methods Like the basis set method and multiconfiguration time dependent self-consistent field. (C) 1998 American Institute of Physics. [S0021-9606(98)50934-8].
Resumo:
Using a kink of arbitrary shape as a toy model for a black hole ( horizon), we study the back-reaction of the evaporation process and find that the horizon is always pushed back ( as in the gravitational case). The associated heat capacity and entropy variation, on the other hand, can be positive or negative, depending on the parameters.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We examine possibility to extract information about the DN and DN interactious from the pd -> D(0)D(-)p reaction. We utilize the notion that the open-charm mesons are first produced hi the annihilation of the antiproton on one nucleon in the deuteron and subsequently rescatter oil the other (the spectator) nucleon. The latter process is then exploited for investigating the DN and DN interaction.,;. We study different methods for isolating the contributions from the D(0)p and D(-)p rescattering terms.
Resumo:
Nickel ferrite powders with a nominal NiFe2O4 composition were synthesized by combustion reaction using urea as fuel. The powder was obtained using a vitreous silica basin heated directly on a hot plate at 480 degrees C until self-ignition occurred. After combustion, the powder was calcined at 700 degrees C for 2 h. The formation of the spinel phase and the distribution of cations in the tetrahedral and octahedral sites of the crystal structure were investigated by the Rietveld method, using synchrotron X-ray diffraction data and Mossbauer spectroscopy. The material presented a crystallite size of 120 nm and magnetic properties. The resulting stoichiometry after the Rietveld refinement was (Fe-0.989(2) Ni-0.011(2)) [Fe-1.012(2) Ni-0.989(2)] O-4.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Anatase nanoparticles were obtained through a modified sol-gel route from titanium isopropoxide modified with acetic acid in order to control hydrolysis and condensation reactions. The modification of Ti(O(i)Pr)(4) with acetic acid reduces the availability of groups that hydrolyze and condense easily through the formation of a stable complex whose structure was determined to be Ti(OCOCH(3))(O(i)Pr)(2) by means of FTIR and (13)C NMR. The presence of this complex was confirmed with FTIR in the early stages of the process. A doublet in 1542 and 1440 cm(-1) stands for the asymmetric and symmetric stretching vibrations of the carboxylic group coordinated to Ti as a bidentate ligand. The gap of 102 cm(-1) between these signals suggests that acetate acts preferentially as a bidentate rather than as a bridging ligand between two titanium atoms. The use of acetic acid as modifier allows the control of both the degree of condensation and oligomerization of the precursor and leads to the preferential crystallization of TiO(2) in the anatase phase. A possible reaction pathway toward the formation of anatase is proposed on the basis of the intermediate species present in a 1:1 Ti(O(i)Pr)(4):CH(3)COOH molar system in which esterification reactions that introduce H(2)O into the reaction mixture were seen to be negligible. The Rietveld refinement and TEM analysis revealed that the powder is composed of isotropic anatase nanocrystallites.