1000 resultados para IMIPRAMINE BINDING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis is the most common inherited lethal disease in Caucasians. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), of which the cftr ?F508 mutation is the most common. ?F508 macrophages are intrinsically defective in autophagy because of the sequestration of essential autophagy molecules within unprocessed CFTR aggregates. Defective autophagy allows Burkholderia cenocepacia (B. cepacia) to survive and replicate in ?F508 macrophages. Infection by B. cepacia poses a great risk to cystic fibrosis patients because it causes accelerated lung inflammation and, in some cases, a lethal necrotizing pneumonia. Autophagy is a cell survival mechanism whereby an autophagosome engulfs non-functional organelles and delivers them to the lysosome for degradation. The ubiquitin binding adaptor protein SQSTM1/p62 is required for the delivery of several ubiquitinated cargos to the autophagosome. In WT macrophages, p62 depletion and overexpression lead to increased and decreased bacterial intracellular survival, respectively. In contrast, depletion of p62 in ?F508 macrophages results in decreased bacterial survival, whereas overexpression of p62 leads to increased B. cepacia intracellular growth. Interestingly, the depletion of p62 from ?F508 macrophages results in the release of the autophagy molecule beclin1 (BECN1) from the mutant CFTR aggregates and allows its redistribution and recruitment to the B. cepacia vacuole, mediating the acquisition of the autophagy marker LC3 and bacterial clearance via autophagy. These data demonstrate that p62 differentially dictates the fate of B. cepacia infection in WT and ?F508 macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharide-binding protein (LBP) and CD14 contribute to the recognition of pathogens by cells, which triggers the activation of defence responses. Smoking is a risk factor for the development of chronic obstructive pulmonary disease (COPD) and respiratory infections. The current authors theorised that levels of LBP and CD14 in the lungs of smokers would be higher than those in the lungs of never-smokers. These elevated levels could affect host responses upon infection. LBP, soluble CD14 (sCD14) and interleukin (IL)-8 were detected by ELISA. Nuclear factor (NF)- ?B, p38 and the inhibitor I?Ba were studied by immunoassays. Gene expression was assessed by RT-PCR. Bronchoalveolar lavage levels of LBP and CD14 were significantly higher in smokers and COPD patients than in never-smokers, whereas levels of both proteins were not significantly different between smokers and COPD patients. IL-6, IL-1ß5 and cigarette smoke condensate induced the expression of LBP and CD14 by airway epithelial cells. LBP and sCD14 inhibited the nontypeable Haemophilus influenzae (NTHi)-dependent secretion of IL-8 and the activation of NF-?B and p38 mitogen-activated protein kinase signalling pathways but they increased the internalisation of NTHi by airway epithelial cells. Thus, in the inflamed airways of smokers both proteins could contribute to inhibit bacteria-dependent cellular activation without compromising the internalisation of pathogens by airway cells. Copyright©ERS Journals Ltd 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adrenomedullin (AM) is an important regulatory peptide involved in both physiological and pathological states. We have previously demonstrated the existence of a specific AM-binding protein (AMBP-1) in human plasma. In the present study, we developed a nonradioactive ligand blotting assay, which, together with high pressure liquid chromatography/SDS-polyacrylamide gel electrophoresis purification techniques, allowed us to isolate AMBP-1 to homogeneity. The purified protein was identified as human complement factor H. We show that AM/factor H interaction interferes with the established methodology for quantification of circulating AM. Our data suggest that this routine procedure does not take into account the AM bound to its binding protein. In addition, we show that factor H affects AM in vitro functions. It enhances AM-mediated induction of cAMP in fibroblasts, augments the AM-mediated growth of a cancer cell line, and suppresses the bactericidal capability of AM on Escherichia coli. Reciprocally, AM influences the complement regulatory function of factor H by enhancing the cleavage of C3b via factor I. In summary, we report on a potentially new regulatory mechanism of AM biology, the influence of factor H on radioimmunoassay quantification of AM, and the possible involvement of AM as a regulator of the complement cascade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular dynamics-based protocol is proposed for finding and scoring protein-ligand binding poses. This protocol uses the recently developed reconnaissance metadynamics method, which employs a self-learning algorithm to construct a bias that pushes the system away from the kinetic traps where it would otherwise remain. The exploration of phase space with this algorithm is shown to be roughly six to eight times faster than unbiased molecular dynamics and is only limited by the time taken to diffuse about the surface of the protein. We apply this method to the well-studied trypsin-benzamidine system and show that we are able to refind all the poses obtained from a reference EADock blind docking calculation. These poses can be scored based on the length of time the system remains trapped in the pose. Alternatively, one can perform dimensionality reduction on the output trajectory and obtain a map of phase space that can be used in more expensive free-energy calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyacrylate molecules can be used to slow the growth of calcium carbonate. However, little is known about the mechanism by which the molecules impede the growth rate. A recent computational study (Bulo et al. Macromolecules 2007, 40, 3437) used metadynamics to investigate the binding of calcium to polyacrylate chains and has thrown some light on the coiling and precipitation of these polymers. We extend these simulations to examine the binding of calcium and carbonate to polyacrylate chains. We show that calcium complexed with both carbonate and polyacrylate is a very stable species. The free energies of calcium-carbonate-polyacrylate complexes, with different polymer configurations, are calculated, and differences in the free energy of the binding of carbonate are shown to be due to differences in the amount of steric hindrance about the calcium, which prevents the approach of the carbonate ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex animals use a wide variety of adaptor proteins to produce specialized sites of interaction between actin and membranes. Plants do not have these protein families, yet actin-membrane interactions within plant cells are critical for the positioning of subcellular compartments, for coordinating intercellular communication, and for membrane deformation [1]. Novel factors are therefore likely to provide interfaces at actin-membrane contacts in plants, but their identity has remained obscure. Here we identify the plantspecific Networked (NET) superfamily of actin-binding proteins, members of which localize to the actin cytoskeleton and specify different membrane compartments. The founding member of the NET superfamily, NET1A, is anchored at the plasma membrane and predominates at cell junctions, the plasmodesmata. NET1A binds directly to actin filaments via a novel actin-binding domain that defines a superfamily of thirteen Arabidopsis proteins divided into four distinct phylogenetic clades. Members of other clades identify interactions at the tonoplast, nuclear membrane, and pollen tube plasma membrane, emphasizing the role of this superfamily in mediating actin-membrane interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plant actin cytoskeleton is a highly dynamic, fibrous structure essential in many cellular processes including cell division and cytoplasmic streaming. This structure is stimulus responsive, being affected by internal stimuli, by biotic and abiotic stresses mediated in signal transduction pathways by actin-binding proteins. The completion of the Arabidopsis genome sequence has allowed a comparative identification of many actin-binding proteins. However, not all are conserved in plants, which possibly reflects the differences in the processes involved in morphogenesis between plant and other cells. Here we have searched for the Arabidopsis equivalents of 67 animal/fungal actin-binding proteins and show that 36 are not conserved in plants. One protein that is conserved across phylogeny is actin-depolymerizing factor or cofilin and we describe our work on the activity of vegetative tissue and pollen-specific isoforms of this protein in plant cells, concluding that they are functionally distinct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A repressor of the transition to flowering in Arabidopsis is the MADS box protein FLOWERING LOCUS C (FLC). FCA, an RNA-binding protein, and FY, a homolog of the yeast RNA 3' processing factor Pfs2p, downregulate FLC expression and therefore promote flowering. FCA/FY physically interact and alter polyadenylation/3' processing to negatively autoregulate FCA. Here, we show that FCA requires FLOWERING LOCUS D (FLD), a homolog of the human lysine-specific demethylase 1 (LSD1) for FLC downregulation. FCA also partially depends on DICER-LIKE 3, involved in chromatin silencing. fca mutations increased levels of unspliced sense FLC transcript, altered processing of antisense FLC transcripts, and increased H3K4 dimethylation in the central region of FLC. These data support a close association of FCA and FLD in mediating H3K4 demethylation and thus transcriptional silencing of FLC and reveal roles for antisense RNA processing and DCL3 function in this regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common liver fluke, Fasciola hepatica, is a parasite of mammals. In the western world its effects are largely felt on agriculture where infection of cows, sheep and other farm animals is estimated to cause millions of dollars ofif financial losses. In the developing world, the problem is even more serious with an estimated 7 million infected people and many millions more at risk of infection. Calcium signalling is of key importance in all eukaryotic species and recent discoveries of novel types of calcium binding proteins in liver flukes (and related trematodes) suggest that there may be calcium signalling processes which are unique to this group of organisms. If so, these pathways may provide potential targets for the design of novel anthelmintic drugs. Here, we review three main groups of F. hepatica calcium binding proteins: the FH8 family, the calmodulin family (FhCaM1, FhCaM2 and FhCaM3) and the EF-hand/dynein light chain family (FH22, FhCaBP3, FhCaBP4). Considerable information has been gathered on the sequences, predicted structures and biochemical properties of these molecules. The challenge now is to understand their functions in the organism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hepatic microcirculation is believed to cause variable cellular oxygenation within the organ. In this study a marker of cellular hypoxia was used to demonstrate liver oxygen tension gradients in vivo. Covalent binding of misonidazole adducts to cellular macromolecules is enhanced by hypoxia. Autoradiographs of liver from mice treated with radiolabeled misonidazole demonstrated enhanced binding of adducts within hepatocytes surrounding hepatic veins. Livers from both hypoxic and normal mice had characteristic autoradiographic grain patterns reflecting regional oxygen tension variation in vivo. Differential binding of misonidazole adducts formed in hypoxic cells could have an application in studies of liver physiology and biochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of monoclonal antibodies was prepared against tegumental and internal antigens of Fasciola hepatica by immunizing mice with whole adult-fluke homogenates prior to harvesting the splenic lymphocytes for fusion. Preliminary screening by the Indirect Fluorescent Antibody technique indicated the occurrence of discrete groups of monoclonals differing from one another in tissue-specificity but within which IFA labelling patterns were fairly consistent. Representative hybridomas for 5 of these groups were stabilized and used to produce ascites fluid in mice. By application of an immunogold labelling technique it was possible to map the distribution of antigens for which each monoclonal antibody had affinity throughout the tissues of 4-week and 12-week flukes. Several monoclonals specifically labelled antigenic determinants on the important tegumental antigen T1. However the distribution of gold colloid labelling suggested that epitopes other than that normally exposed to the infected host were recognized; and several monoclonals specifically attached to T1 antigen in the tegument of juvenile worms only. The glycocalyx of the gut and excretory system of flukes shared T1 antigenicity with the tegument. Monoclonal antibodies were produced against an internal immunogen associated with ribosomes and heterochromatin in active protein-producing cells, and against interstitial material of adult flukes. Monoclonals against antigens in parenchymal cell cytoplasm and in mature vitelline cells were recognized but the corresponding hybridomas were not stabilized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent report showed significant associations between several SNPs in a previously unknown EST cluster with schizophrenia. (1). The cluster was identified as the human dystrobrevin binding protein 1 gene (DTNBP1) by sequence database comparisons and homology with mouse DTNBP1. (2). However, the linkage disequilibrium (LD) among the SNPs in DTNBP1 as well as the pattern of significant SNP-schizophrenia association was complex. This raised several questions such as the number of susceptibility alleles that may be involved and the size of the region where the actual disease mutation(s) could be located. To address these questions, we performed different single-marker tests on the 12 previously studied and 2 new SNPs in DTNBP1 that were re-scored using an improved procedure, and performed a variety of haplotype analyses. The sample consisted of 268 Irish multiplex families selected for high density of schizophrenia. Results suggested a simple structure where the LD in the target region could be explained by 6 haplotypes that together accounted for 96% of haplotype diversity in the whole sample. From these six, a single high-risk haplotype was identified that showed a significant association with schizophrenia and explained the pattern of significant findings in the analyses with individual markers. This haplotype was 30 kb long, had a large effect, could be measured with two tag SNPs only, had a frequency of 6% in our sample, seemed to be of relatively recent origin in evolutionary terms, and was equally distributed over Ireland. Implications of these findings for follow-up and replication studies are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptor proteins play an important role in signal transduction by regulating the establishment and maintenance of functionally important protein complexes. A recently described member of this group of proteins is p130cas (CAS), which contains numerous sequence motifs predicted to be involved in mediating protein-protein interactions. We propose that adaptor molecules like CAS may help determine the response of a cell to a particular signal by interacting with specific subsets of cellular proteins. To test this hypothesis, we have identified potential binding partners of CAS that may play a rote in cellular transformation by the oncoproteins v-SRC and/or v-CRK. We show that individual domains of CAS associate with specific subsets of proteins in vitro, and that many of these interactions are dependent on the state of tyrosine-phosphorylation of CAS. Sequences necessary for interacting with the focal adhesion kinase pp125FAK (FAK), v-SRC and v-CRK have been mapped to distinct regions of CAS. In addition, the identification of a number of putative CAS-binding partners that are present in crk-transformed cell extracts but undetectable in normal and src-transformed cell extracts supports a model in which unique protein complexes are formed in response to different signals.