859 resultados para Hydrological forecasting
Resumo:
Peer reviewed
Resumo:
Election forecasting models assume retrospective economic voting and clear mechanisms of accountability. Previous research indeed indicates that incumbent political parties are being held accountable for the state of the economy. In this article we develop a ‘hard case’ for the assumptions of election forecasting models. Belgium is a multiparty system with perennial coalition governments. Furthermore, Belgium has two completely segregated party systems (Dutch and French language). Since the prime minister during the period 1974-2011 has always been a Dutch language politician, French language voters could not even vote for the prime minister, so this cognitive shortcut to establish political accountability is not available. Results of an analysis for the French speaking parties (1981-2010) show that even in these conditions of opaque accountability, retrospective economic voting occurs as election results respond to indicators with regard to GDP and unemployment levels. Party membership figures can be used to model the popularity function in election forecasting.
Resumo:
Soil erosion by water is a major driven force causing land degradation. Laboratory experiments, on-site field study, and suspended sediments measurements were major fundamental approaches to study the mechanisms of soil water erosion and to quantify the erosive losses during rain events. The experimental research faces the challenge to extent the result to a wider spatial scale. Soil water erosion modeling provides possible solutions for scaling problems in erosion research, and is of principal importance to better understanding the governing processes of water erosion. However, soil water erosion models were considered to have limited value in practice. Uncertainties in hydrological simulations are among the reasons that hindering the development of water erosion model. Hydrological models gained substantial improvement recently and several water erosion models took advantages of the improvement of hydrological models. It is crucial to know the impact of changes in hydrological processes modeling on soil erosion simulation.
This dissertation work first created an erosion modeling tool (GEOtopSed) that takes advantage of the comprehensive hydrological model (GEOtop). The newly created tool was then tested and evaluated at an experimental watershed. The GEOtopSed model showed its ability to estimate multi-year soil erosion rate with varied hydrological conditions. To investigate the impact of different hydrological representations on soil erosion simulation, a 11-year simulation experiment was conducted for six models with varied configurations. The results were compared at varied temporal and spatial scales to highlight the roles of hydrological feedbacks on erosion. Models with simplified hydrological representations showed agreement with GEOtopSed model on long temporal scale (longer than annual). This result led to an investigation for erosion simulation at different rainfall regimes to check whether models with different hydrological representations have agreement on the soil water erosion responses to the changing climate. Multi-year ensemble simulations with different extreme precipitation scenarios were conducted at seven climate regions. The differences in erosion simulation results showed the influences of hydrological feedbacks which cannot be seen by purely rainfall erosivity method.
Resumo:
Copyright © 2016 Fuxing Li et al.The sensitivity of hydrologic variables in East China, that is, runoff, precipitation, evapotranspiration, and soil moisture to the fluctuation of East Asian summer monsoon (EASM), is evaluated by the Mann-Kendall correlation analysis on a spatial resolution of 1/4° in the period of 1952-2012. The results indicate remarkable spatial disparities in the correlation between the hydrologic variables and EASM. The regions in East China susceptible to hydrological change due to EASM fluctuation are identified. When the standardized anomaly of intensity index of EASM (EASMI) is above 1.00, the runoff of Haihe basin has increased by 49% on average, especially in the suburb of Beijing and Hebei province where the runoff has increased up to 105%. In contrast, the runoff in the basins of Haihe and Yellow River has decreased by about 27% and 17%, respectively, when the standardized anomaly of EASMI is below -1.00, which has brought severe drought to the areas since mid-1970s. The study can be beneficial for national or watershed agencies developing adaptive water management strategies in the face of global climate change.
Resumo:
Few hydrological studies have been made in Greenland, other than on glacial hydrology associated with the ice sheet. Understanding permafrost hydrology and hydroclimatic change and variability, however, provides key information for understanding climate change effects and feedbacks in the Arctic landscape. This paper presents a new extensive and detailed hydrological and meteorological open access dataset, with high temporal resolution from a 1.56 km**2 permafrost catchment with a lake underlain by a through talik close to the ice sheet in the Kangerlussuaq region, western Greenland. The paper describes the hydrological site investigations and utilized equipment, as well as the data collection and processing. The investigations were performed between 2010 and 2013. The high spatial resolution, within the investigated area, of the dataset makes it highly suitable for various detailed hydrological and ecological studies on catchment scale.
Resumo:
Abstract Purpose The purpose of the study is to review recent studies published from 2007-2015 on tourism and hotel demand modeling and forecasting with a view to identifying the emerging topics and methods studied and to pointing future research directions in the field. Design/Methodology/approach Articles on tourism and hotel demand modeling and forecasting published in both science citation index (SCI) and social science citation index (SSCI) journals were identified and analyzed. Findings This review found that the studies focused on hotel demand are relatively less than those on tourism demand. It is also observed that more and more studies have moved away from the aggregate tourism demand analysis, while disaggregate markets and niche products have attracted increasing attention. Some studies have gone beyond neoclassical economic theory to seek additional explanations of the dynamics of tourism and hotel demand, such as environmental factors, tourist online behavior and consumer confidence indicators, among others. More sophisticated techniques such as nonlinear smooth transition regression, mixed-frequency modeling technique and nonparametric singular spectrum analysis have also been introduced to this research area. Research limitations/implications The main limitation of this review is that the articles included in this study only cover the English literature. Future review of this kind should also include articles published in other languages. The review provides a useful guide for researchers who are interested in future research on tourism and hotel demand modeling and forecasting. Practical implications This review provides important suggestions and recommendations for improving the efficiency of tourism and hospitality management practices. Originality/value The value of this review is that it identifies the current trends in tourism and hotel demand modeling and forecasting research and points out future research directions.
Resumo:
Due to the variability and stochastic nature of wind power system, accurate wind power forecasting has an important role in developing reliable and economic power system operation and control strategies. As wind variability is stochastic, Gaussian Process regression has recently been introduced to capture the randomness of wind energy. However, the disadvantages of Gaussian Process regression include its computation complexity and incapability to adapt to time varying time-series systems. A variant Gaussian Process for time series forecasting is introduced in this study to address these issues. This new method is shown to be capable of reducing computational complexity and increasing prediction accuracy. It is further proved that the forecasting result converges as the number of available data approaches innite. Further, a teaching learning based optimization (TLBO) method is used to train the model and to accelerate
the learning rate. The proposed modelling and optimization method is applied to forecast both the wind power generation of Ireland and that from a single wind farm to show the eectiveness of the proposed method.
Resumo:
Production Planning and Control (PPC) systems have grown and changed because of the developments in planning tools and models as well as the use of computers and information systems in this area. Though so much is available in research journals, practice of PPC is lagging behind and does not use much from published research. The practices of PPC in SMEs lag behind because of many reasons, which need to be explored. This research work deals with the effect of identified variables such as forecasting, planning and control methods adopted, demographics of the key person, standardization practices followed, effect of training, learning and IT usage on firm performance. A model and framework has been developed based on literature. Empirical testing of the model has been done after collecting data using a questionnaire schedule administered among the selected respondents from Small and Medium Enterprises (SMEs) in India. Final data included 382 responses. Hypotheses linking SME performance with the use of forecasting, planning and controlling were formed and tested. Exploratory factor analysis was used for data reduction and for identifying the factor structure. High and low performing firms were classified using a Logistic Regression model. A confirmatory factor analysis was used to study the structural relationship between firm performance and dependent variables.
Resumo:
The objective of the evaluation of the weather forecasting services used by the Iowa Department of Transportation is to ascertain the accuracy of the forecasts given to maintenance personnel and to determine whether the forecasts are useful in the decision-making process and whether the forecasts have potential for improving the level of service. The Iowa Department of Transportation has estimated the average cost of fighting a winter storm to be about $60,000 to $70,000 per hour. This final report is to provide an evaluation report describing the collection of weather data and information associated with the weather forecasting services provided to the Iowa Department of Transportation and its maintenance activities and to determine their impact in winter maintenance decision-making.
Resumo:
The meteorological and chemical transport model WRF-Chem was implemented to forecast PM10 concentrations over Poland. WRF-Chem version 3.5 was configured with three one-way nested domains using the GFS meteorological data and the TNO MACC II emissions. The 48 hour forecasts were run for each day of the winter and summer period of 2014 and there is only a small decrease in model performance for winter with respect to forecast lead time. The model in general captures the variability in observed PM10 concentrations for most of the stations. However, for some locations and specific episodes, the model performance is poor and the results cannot yet be used by official authorities. We argue that a higher resolution sector-based emission data will be helpful for this analysis in connection with a focus on planetary boundary layer processes in WRF-Chem and their impact on the initial distribution of emissions on both time and space.
Resumo:
Yield management helps hotels more profitably manage the capacity of their rooms. Hotels tend to have two types of business: transient and group. Yield management research and systems have been designed for transient business in which the group forecast is taken as a given. In this research, forecast data from approximately 90 hotels of a large North American hotel chain were used to determine the accuracy of group forecasts and to identify factors associated with accurate forecasts. Forecasts showed a positive bias and had a mean absolute percentage error (MAPE) of 40% at two months before arrival; 30% at one month before arrival; and 10-15% on the day of arrival. Larger hotels, hotels with a higher dependence on group business, and hotels that updated their forecasts frequently during the month before arrival had more accurate forecasts.
Resumo:
Oil palm has increasingly been established on peatlands throughout Indonesia. One of the concerns is that the drainage required for cultivating oil palm in peatlands leads to soil subsidence, potentially increasing future flood risks. This study analyzes the hydrological and economic effects of oil palm production in a peat landscape in Central Kalimantan. We examine two land use scenarios, one involving conversion of the complete landscape including a large peat area to oil palm plantations, and another involving mixed land use including oil palm plantations, jelutung (jungle rubber; (Dyera spp.) plantations, and natural forest. The hydrological effect was analyzed through flood risk modeling using a high-resolution digital elevation model. For the economic analysis, we analyzed four ecosystem services: oil palm production, jelutung production, carbon sequestration, and orangutan habitat. This study shows that after 100 years, in the oil palm scenario, about 67% of peat in the study area will be subject to regular flooding. The flood-prone area will be unsuitable for oil palm and other crops requiring drained soils. The oil palm scenario is the most profitable only in the short term and when the externalities of oil palm production, i.e., the costs of CO2 emissions, are not considered. In the examined scenarios, the social costs of carbon emissions exceed the private benefits from oil palm plantations in peat. Depending upon the local hydrology, income from jelutung, which can sustainably be grown in undrained conditions and does not lead to soil subsidence, outweighs that from oil palm after several decades. These findings illustrate the trade-offs faced at present in Indonesian peatland management and point to economic advantages of an approach that involves expansion of oil palm on mineral lands while conserving natural peat forests and using degraded peat for crops that do not require drainage.
Resumo:
This dissertation contains four essays that all share a common purpose: developing new methodologies to exploit the potential of high-frequency data for the measurement, modeling and forecasting of financial assets volatility and correlations. The first two chapters provide useful tools for univariate applications while the last two chapters develop multivariate methodologies. In chapter 1, we introduce a new class of univariate volatility models named FloGARCH models. FloGARCH models provide a parsimonious joint model for low frequency returns and realized measures, and are sufficiently flexible to capture long memory as well as asymmetries related to leverage effects. We analyze the performances of the models in a realistic numerical study and on the basis of a data set composed of 65 equities. Using more than 10 years of high-frequency transactions, we document significant statistical gains related to the FloGARCH models in terms of in-sample fit, out-of-sample fit and forecasting accuracy compared to classical and Realized GARCH models. In chapter 2, using 12 years of high-frequency transactions for 55 U.S. stocks, we argue that combining low-frequency exogenous economic indicators with high-frequency financial data improves the ability of conditionally heteroskedastic models to forecast the volatility of returns, their full multi-step ahead conditional distribution and the multi-period Value-at-Risk. Using a refined version of the Realized LGARCH model allowing for time-varying intercept and implemented with realized kernels, we document that nominal corporate profits and term spreads have strong long-run predictive ability and generate accurate risk measures forecasts over long-horizon. The results are based on several loss functions and tests, including the Model Confidence Set. Chapter 3 is a joint work with David Veredas. We study the class of disentangled realized estimators for the integrated covariance matrix of Brownian semimartingales with finite activity jumps. These estimators separate correlations and volatilities. We analyze different combinations of quantile- and median-based realized volatilities, and four estimators of realized correlations with three synchronization schemes. Their finite sample properties are studied under four data generating processes, in presence, or not, of microstructure noise, and under synchronous and asynchronous trading. The main finding is that the pre-averaged version of disentangled estimators based on Gaussian ranks (for the correlations) and median deviations (for the volatilities) provide a precise, computationally efficient, and easy alternative to measure integrated covariances on the basis of noisy and asynchronous prices. Along these lines, a minimum variance portfolio application shows the superiority of this disentangled realized estimator in terms of numerous performance metrics. Chapter 4 is co-authored with Niels S. Hansen, Asger Lunde and Kasper V. Olesen, all affiliated with CREATES at Aarhus University. We propose to use the Realized Beta GARCH model to exploit the potential of high-frequency data in commodity markets. The model produces high quality forecasts of pairwise correlations between commodities which can be used to construct a composite covariance matrix. We evaluate the quality of this matrix in a portfolio context and compare it to models used in the industry. We demonstrate significant economic gains in a realistic setting including short selling constraints and transaction costs.