872 resultados para Homographic Transformation
Resumo:
In this paper a relation between the Camassa-Holm equation and the non-local deformations of the sinh-Gordon equation is used to study some properties of the former equation. We will show that cuspon and soliton solutions can be obtained from soliton solutions of the deformed sinh-Gordon equation.
Resumo:
The propagation of a free scalar field phi with mass m in a curved background is generally described by the equation (g(munu) delmudelnu + m(2) + xiR)phi = 0. There exist some arguments in the literature that seem to favor the conformal coupling to the detriment of the minimal one. However, the majority of these claims axe inconclusive. Here we show that the exact Foldy Wouthuysen transformation for spin-0 particle coupled to a wide class of static spacetime metrics exists independently of the value of. Nevertheless, if the coupling is of the conformal type, the gravitational Darwin-like term has an uncomplicated structure and it is proportional to the corresponding term in the fermionic case. In addition, an independent computation of this term, which has its origin in the zitterbewegung fluctuation of the boson's position with the mean square <(deltar)(2)> approximate to 1/m(2), gives a result that coincides with that obtained using the aforementioned exact transformation with xi = 1/6.
Resumo:
In this paper, we present relations between Camassa-Holm (CH), Harry-Dym (HD) and modified Korteweg-de Vries (mKdV) hierarchies, which are given by the hodograph type transformation. (C) 2001 IMACS. Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
The non-existence of a relativistic temperature transformation is due to the fact that an observer moving in a heat reservoir cannot detect a blackbody spectrum. (C) 2004 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effect of Ag additions on the reverse martensitic transformation in the Cu-10 mass% Al alloy was studied using differential thermal analysis (DTA), optical (OM) and scanning electron microscopies (SEM) and X-ray diffractometry. The results indicated that Ag additions to the Cu-10 mass% Al alloy shift the equilibrium concentration to higher Al contents, allow to obtain both beta(1)' and beta' martensitic phases in equilibrium and that Ag precipitation is a process associated with the perlitic phase formation.
Resumo:
The development of new shape memory alloys with high martensitic transformation temperature increases the potential for applications. The development and use of these new alloys depends on the stability of the structure during cycling at high temperatures. If it is possible to guarantee that on alloys keeps the structure during cycling, then the alloy can be used because of the shape memory properties. The aim of this work is to obtain a kinetic model of the forward and backward martensitic transformation of two Cu-Al-Ni-Mn-Ti alloys. Differential scanning calorimetry has been performed in order to establish the kinetic stability of the martensite and the beta transformation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The reverse martensitic transformation in the Cu-10 wt%Al-6 wt%Ag alloy was studied by classical differential thermal analysis (IDTA), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicated that the presence of Ag in the Cu-10%Al alloy is responsible for the separation of the competitive reactions that occur during the reverse martensitic transformation and is also associated to an increase in the disordering degree at high temperatures, when compared with alloys without Ag addition. (c) 2005 Springer Science + Business Media, Inc.
Resumo:
The order-disorder transformation in the Ni-4.49 at.% Al alloy was studied using electrical resistivity measurements, microhardness measurements, differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The results confirmed the ordering behavior expected for Ni-Al dilute alloys and the suggested relation between resistivity changes and microhardness changes with antiferromagnetic spin ordering. The higher value obtained for the activation energy of vacancy migration was associated with a decrease in the Al concentration gradient near solute-depleted regions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
One of the most studied ceramic superconductors for application has been, undoubtedly, Bi2Sr2CaCu2O8+delta. Although being a multiphasic material, it has proved to have great advantages compared to other ceramic systems. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature call distinguish among different atomic jumps that occur inside the various phases or at different local ordering. In this paper, mechanical loss spectra of Bi2Sr2CaCu2O8+delta bar shaped samples, made by a conventional method, have been measured between 80 and 600 K, using a torsion pendulum operating in frequencies below 50 Hz, for samples annealed in vacuum up to 600 K. Possible relaxation mechanisms are proposed to explain the origin of the mechanical-loss peaks observed 300 and 500 K. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The crystallization process of lead titanate (PT) prepared using the polymeric precursor method was investigated using X-ray diffractometry, Raman spectroscopy, electron microscopy, and X-ray absorption spectroscopy techniques. The results showed that amorphous PT was formed by an O-Ti-O structure composed of fivefold and sixfold oxygen-coordinated titanium. The local structure of the amorphous PT phase was similar to that of the cubic PT phase, i.e., similar coordination number and similar bond lengths, leading to a topotactic-like transformation during the phase transformation from amorphous to cubic perovskite PT. Because of the low crystallization temperature, every transformation observed during the crystallization process was associated with a short-range rearrangement process.
Resumo:
Bottom-up methods to obtain nanocrystals usually result in metastable phases, even in processes carried out at room temperature or under soft annealing conditions. However, stable phases, often associated with anisotropic shapes, are obtained in only a few special cases. In this paper we report on the synthesis of two well-studied oxides-titanium and zirconium oxide-in the nanometric range, by a novel route based on the decomposition of peroxide complexes of the two metals under hydrothermal soft conditions, obtaining metastable and stable phases in both cases through transformation. High-resolution transmission electron microscopy analysis reveals the existence of typical defects relating to growth by the oriented attachment mechanism in the stable crystals. The results suggest that the mechanism is associated to the phase transformation of these structures.
Resumo:
Uniform metal iron ellipsoidal particles of around 200 nm in length were obtained by reduction and passivation of alumina-coated alpha-Fe2O3 (hematite) particles under different conditions of temperature and hydrogen flow rate. The monodispersed hematite particles were prepared by the controlled hydrolysis of ferric sulfate and further coated with a homogeneous thin layer of Al2O3 by careful selection of the experimental conditions, mainly pH and aluminum salt concentration. The reduction mechanism of alpha-Fe2O3 into alpha-Fe was followed by x-ray and electron diffraction, and also by the measurements of the irreversible magnetic susceptibility. The transformation was found to be topotactic with the [001] direction of hematite particles, which lies along the long axis of the particles, becoming the [111] direction of magnetite and finally the [111] direction of metal iron. Temperature and hydrogen flow rate during the reduction have been found to be important parameters, which determine not only the degree of reduction but also the crystallite size of the final particles. Magnetic characterization of the samples shows that the only parameters affected by the crystallite size are the saturation magnetization and magnetic time-dependence effect, i.e., activation volume. (C) 2002 American Institute of Physics.
Resumo:
Using the Unruh-DeWitt detector, it is shown that a universal and continuous Lorentz transformation of temperature cannot exist for black-body radiation. Since any valid Lorentz transformation of temperature must be able to deal with black-body radiation, it is concluded that a universal and continuous temperature transformation does not exist.
Resumo:
A new series of high temperature copper based shape memory alloys has recently been patented. These alloys contain 8-20 wt% Al, 1-20 wt% Ag, 0-2 wt% of a minor element (preferably Co), balance copper. The martensitic start transformation temperatures of these alloys are above 200 degrees C and, in some cases, they have good high temperature stability and may be useful in commercial applications where higher operating temperatures than those obtained from Cu-Zn-Al and Cu-Al-Ni shape memory alloys are required.