957 resultados para Histone-Lysine N-Methyltransferase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selenium (Se) is an essential micronutrient for many organisms, including plants, animals and humans. As plants are the main source of dietary Se, plant Se metabolism is therefore important for Se nutrition of humans and other animals. However, the concentration of Se in plant foods varies between areas, and too much Se can lead to toxicity. As we discuss here, plant Se uptake and metabolism can be exploited for the purposes of developing high-Se crop cultivars and for plant-mediated removal of excess Se from soil or water. Here, we review key developments in the current understanding of Se in higher plants. We also discuss recent advances in the genetic engineering of Se metabolism, particularly for biofortification and phytoremediation of Se-contaminated environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The administration of recombinant methionyl bovine somatotropin (rMbST) to dairy cows to increase milk yield remains a common practice in many countries including the USA, Brazil, Mexico, South Africa and Korea, whereas it has been forbidden within the European Union (EU) since 1999. A rapid screening immunoanalytical method capable of the unequivocal determination of rMbST in milk would be highly desirable in order to effectively monitor compliance with the EU-wide ban for home-made or imported dairy products. For decades, the production of specific antibodies for this recombinant isoform of bovine somatotropin (bST) has remained elusive, due to the high degree of sequence homology between both counterparts (e.g. methionine for rMbST in substitution of alanine in bST at the N-terminus). In this study, we compared several immunizing strategies for the production of specific polyclonal antibodies (pAbs), based on the use of the full-length recombinant protein, an rMbST N-terminus peptide fragment and a multiple antigen peptide (MAP) which consists of an oligomeric branching lysine core attached to the first two N-terminus amino acids of rMbST, methionine and phenylalanine (MF-MAP). The immunization with KLH-conjugated MF-MAP led to the production of the pAb with the highest rMbST/bST recognition ratio amongst the generated battery of antibodies. The pAb exhibited a specific binding ability to rMbST in a competitive antigen-coated ELISA format, which avidity was further improved after purification by rMbST N-terminus peptide-based affinity chromatography. These results suggest that immunodiscrimination between structurally related proteins can be achieved using immuno-enhanced immunogens such as MAPs. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Dietary exposure to high levels of the fungal toxin, aflatoxin, occurs in West Africa, where long-term crop storage facilitates fungal growth.

Methods We conducted a cross-sectional study in Benin and Togo to investigate aflatoxin exposure in children around the time of weaning and correlated these data with food consumption, socioeconomic status, agro-ecological zone of residence, and anthropometric measures. Blood samples from 479 children (age 9 months to 5 years) from 16 villages in four agro-ecological zones were assayed for aflatoxin-albumin adducts (AF-alb) as a measure of recent past (2-3 months) exposure.

Results Aflatoxin-albumin adducts were detected in 475/479 (99%) children (geometric mean 32.8 pg/mg, 95% CI: 25.3-42.5). Adduct levels varied markedly across agro-ecological zones with mean levels being approximately four times higher in the central than in the northern region. The AF-alb level increased with age up to 3 years, and within the 1-3 year age group was significantly (P=0.0001) related to weaning status; weaned children had approximately twofold higher mean AF-alb adduct levels (38 pg AF-lysine equivalents per mg of albumin [pg/mg]) than those receiving a mixture of breast milk and solid foods after adjustment for age, sex, agro-ecological zone, and socioeconomic status. A higher frequency of maize consumption, but not groundnut consumption, by the child in the preceding week was correlated with higher AF-alb adduct level. We previously reported that the prevalence of stunted growth (height for age Z-score HAZ) and being underweight (weight for age Z-score WAZ) were 33% and 29% respectively by World Health Organziation criteria. Children in these two categories had 30-40% higher mean AF-alb levels than the remainder of the children and strong dose- response relationships were observed between AF-alb levels and the extent of stunting and being underweight.

Conclusions Exposure to this common toxic contaminant of West African food increases markedly following weaning and exposure early in life is associated with reduced growth. These observations reinforce the need for aflatoxin exposure intervention strategies within high-risk countries, possibly targeted specifically at foods used in the post-weaning period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) have a central role in the regulation of gene expression. Here we investigated whether HDAC7 has an impact on embryonic stem (ES) cell differentiation into smooth muscle cells (SMCs). ES cells were seeded on collagen-IV-coated flasks and cultured in the absence of leukemia inhibitory factor in differentiation medium to induce SMC differentiation. Western blots and double-immunofluorescence staining demonstrated that HDAC7 has a parallel expression pattern with SMC marker genes. In ex vivo culture of embryonic cells from SM22-LacZ transgenic mice, overexpression of HDAC7 significantly increased beta-galactosidase-positive cell numbers and enzyme activity, indicating its crucial role in SMC differentiation during embryonic development. We found that HDAC7 undergoes alternative splicing during ES cell differentiation. Platelet-derived growth factor enhanced ES cell differentiation into SMCs through upregulation of HDAC7 splicing. Further experiments revealed that HDAC7 splicing induced SMC differentiation through modulation of the SRF-myocardin complex. These findings suggest that HDAC7 splicing is important for SMC differentiation and vessel formation in embryonic development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vascular diseases, including atherosclerosis, angioplasty-induced restenosis, vessel graft arteriosclerosis and hypertension-related stenosis, remain the most prevalent cause of death in the developed world. The aetiology of vascular diseases is multifactorial with both genetic and environmental factors. Recently, some of the most promising research identifies the epigenetic modification of the genome to play a major role in the disease development, linking the environmental insults with gene regulation. In this process, modification of DNA by methylation, and histone modification by acetylation, methylation, phosphorylation and/or SUMOylation are reported. Importantly, recent studies demonstrated that histone deacetylase (HDAC) enzymes are crucial in endothelial integrity, smooth muscle proliferation and in the formation of arteriosclerosis in animal models. The study of HDACs has shown remarkable specificity of HDAC family members in vascular cell growth/death that influences the disease process. Interestingly, the effects of HDACs on arteriosclerosis development in animal models have been observed after HDAC inhibition using specific inhibitors. This provides a new approach for the treatment of vascular disease using the agents that influence the epigenetic process in vascular cells. This review updates the rapid advances in epigenetics of vascular diseases focusing on the role of HDAC family in atherosclerosis. It will also discuss the underlying mechanisms of histone acetylation in vascular cells and highlight the therapeutic potential of such agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously demonstrated that histone deacetylase 7 (HDAC7) expression and splicing play an important role in smooth muscle cell (SMC) differentiation from embryonic stem (ES) cells, but the molecular mechanisms of increased HDAC7 expression during SMC differentiation are currently unknown. In this study, we found that platelet-derived growth factor-BB (PDGF-BB) induced a 3-fold increase in the transcripts of HDAC7 in differentiating ES cells. Importantly, our data also revealed that PDGF-BB regulated HDAC7 expression not through phosphorylation of HDAC7 but through transcriptional activation. By dissecting its promoters with progressive deletion analysis, we identified the sequence between -343 and -292 bp in the 5'-flanking region of the Hdac7 gene promoter as the minimal PDGF-BB-responsive element, which contains one binding site for the transcription factor, specificity protein 1 (Sp1). Mutation of the Sp1 site within this PDGF-BB-responsive element abolished PDGF-BB-induced HDAC7 activity. PDGF-BB treatment enhanced Sp1 binding to the Hdac7 promoter in differentiated SMCs in vivo as demonstrated by the chromatin immunoprecipitation assay. Moreover, we also demonstrated that knockdown of Sp1 abrogated PDGF-BB-induced HDAC7 up-regulation and SMC differentiation gene expression in differentiating ES cells, although enforced expression of Sp1 alone was sufficient to increase the activity of the Hdac7 promoter and expression levels of SMC differentiation genes. Importantly, we further demonstrated that HDAC7 was required for Sp1-induced SMC differentiation of gene expression. Our data suggest that Sp1 plays an important role in the regulation of Hdac7 gene expression in SMC differentiation from ES cells. These findings provide novel molecular insights into the regulation of HDAC7 and enhance our knowledge in SMC differentiation and vessel formation during embryonic development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflammation and TNF-alpha signaling play a central role in most of the pathological conditions where cell transplantation could be applied. As shown by initial experiments, embryonic stem (ES) cells and ES-cell derived vascular cells express very low levels of TNF-alpha receptor I (TNFRp55) and thus do not induce cytokine expression in response to TNF-alpha stimulation. Transient transfection analysis of wild-type or deletion variants of the TNFRp55 gene promoter showed a strong activity for a 250-bp fragment in the upstream region of the gene. This activity was abolished by mutations targeting the Sp1/Sp3 or AP1 binding sites. Moreover, treatment with trichostatin A (TSA) led to a pronounced increase in TNFRp55 mRNA and promoter activity. Overexpression of Sp1 or c-fos further enhanced the TSA-induced luciferase activity, and this response was attenuated by Sp3 or c-jun coexpression. Additional experiments revealed that TSA did not affect the Sp1/Sp3 ratio but caused transcriptional activation of the c-fos gene. Thus, we provide the first evidence that ES and ES-cell-derived vascular cells lack cytokine expression in response to TNF-alpha stimulation due to low levels of c-fos and transcriptional activation of Sp1 that can be regulated by inhibition of histone deacetylase activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reendothelialization involves endothelial progenitor cell (EPC) homing, proliferation, and differentiation, which may be influenced by fluid shear stress and local flow pattern. This study aims to elucidate the role of laminar flow on embryonic stem (ES) cell differentiation and the underlying mechanism. We demonstrated that laminar flow enhanced ES cell-derived progenitor cell proliferation and differentiation into endothelial cells (ECs). Laminar flow stabilized and activated histone deacetylase 3 (HDAC3) through the Flk-1-PI3K-Akt pathway, which in turn deacetylated p53, leading to p21 activation. A similar signal pathway was detected in vascular endothelial growth factor-induced EC differentiation. HDAC3 and p21 were detected in blood vessels during embryogenesis. Local transfer of ES cell-derived EPC incorporated into injured femoral artery and reduced neointima formation in a mouse model. These data suggest that shear stress is a key regulator for stem cell differentiation into EC, especially in EPC differentiation, which can be used for vascular repair, and that the Flk-1-PI3K-Akt-HDAC3-p53-p21 pathway is crucial in such a process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The permeability of the outer membrane (OM) to hydrophobic probes and its susceptibility to bactericidal cationic peptides were investigated for natural rough Brucella ovis and for mutant rough Brucella abortus strains. The OM of B. ovis displayed an abrupt and faster kinetic profile than rough B. abortus during the uptake of the hydrophobic probe N-phenyl-naphthylamine. B. ovis was more sensitive than rough B. abortus to the action of cationic peptides. Bactenecins 5 and 7 induced morphological alterations on the OMs of both rough Brucella strains. B. ovis lipopolysaccharide (LPS) captured considerably more polymyxin B than LPSs from both rough and smooth B. abortus strains. Polymyxin B, poly-L-lysine, and poly-L-ornithine produced a thick coating on the surfaces of both strains, which was more evident in B. ovis than in rough B. abortus. The distinct functional properties of the OMs of these two rough strains correlate with some structural differences of their OMs and with their different biological behaviors in animals and culture cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensitivities to polycationic peptides and EDTA were compared in Yersinia enterocolitica pathogenic and environmental biogroups. As shown by changes in permeability to the fluorescent hydrophobic probe N-phenylnaphthylamine (NPN), the outer membranes (OMs) of pathogenic and environmental strains grown at 26 degrees C in standard broth were more resistant to poly-L-lysine, poly-L-ornithine, melittin, cecropin P1, polymyxin B, and EDTA than Escherichia coli OMs. At 37 degrees C, OMs of pathogenic biogroups were resistant to EDTA and polycations and OMs of environmental strains were resistant to EDTA whereas E. coli OMs were sensitive to both EDTA and polycations. Similar results were found when testing deoxycholate sensitivity after polycation exposure or when isogenic pairs with or without virulence plasmid pYV were compared. With bacteria grown without Ca++ available, OM permeability to NPN was drastically increased in pathogenic but not in environmental strains or E. coli. Under these conditions, OMs of pYV+ and pYV- cells showed small differences in NPN permeability but differences in polycation sensitivity could not be detected by fluorimetry. O:1,6 (environmental type) lipopolysaccharide (LPS), but not O:3 or O:8 LPS, was markedly rough at 37 degrees C, and this could explain the differences in polycation sensitivity. LPSs from serotypes O:3 and O:8 grown at 37 degrees C were more permeable to NPN than O:1,6 LPS, and O:8 LPS was resistant to polycation-induced permeabilization. These data suggest that LPSs relate to some but not all the OM differences described. It is hypothesized that the different OM properties of environmental and pathogenic biogroups reflect the adaptation of the latter biogroups to pathogenicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemoresistance is a major contributor to the aggressiveness of AML and is often due to insufficient apoptosis. The CFLAR gene is expressed as long and short splice forms encoding the anti-apoptotic proteins c-FLIP(L) and c-FLIP(S) (CFLAR(L) and CFLAR(S) , respectively) that play important roles in drug resistance. In univariate analyses of CFLAR mRNA expression in adult AML patients, those individuals with higher than median mRNA expression of the long splice form CFLAR(L) (but not the short splice form) had significantly lower 3 year overall survival (P = 0·04) compared to those with low expression. In cell line studies, simultaneous down-regulation of c-FLIP(L) and c-FLIP(S) proteins using siRNA induced apoptosis in U937 and NB-4 AML cells, but not K562 or OCI-AML3 cells. However, dual c-FLIP(L/S) downregulation sensitized all four cell lines to apoptosis induced by recombinant tumour necrosis factor-related apoptosis-inducing ligand (rTRAIL). Moreover, specific downregulation of c-FLIP(L) was found to recapitulate the phenotypic effects of dual c-FLIP(L/S) downregulation. The histone deacetylase (HDAC)1/2/3/6 inhibitor Vorinostat was found to potently down-regulate c-FLIP(L) expression by transcriptional and post-transcriptional mechanisms and to sensitize AML cells to rTRAIL. Further analyses using more selective HDAC inhibitors revealed that HDAC6 inhibition was not required for c-FLIP(L) down-regulation. These results suggest that c-FLIP(L) may have clinical relevance both as a prognostic biomarker and potential therapeutic target for HDAC inhibitors in AML although this requires further study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Increased advanced glycation end-products (AGEs) and their soluble receptors (sRAGE) have been implicated in the pathogenesis of pre-eclampsia (PE). However, this association has not been elucidated in pregnancies complicated by diabetes. We aimed to investigate the serum levels of these factors in pregnant women with Type 1 diabetes mellitus (T1DM), a condition associated with a four-fold increase in PE. Design Prospective study in women with T1DM at 12.2 ± 1.9, 21.6 ± 1.5 and 31.5 ± 1.7 weeks of gestation [mean ± standard deviation (SD); no overlap] before PE onset. Setting Antenatal clinics. Population Pregnant women with T1DM (n = 118; 26 developed PE) and healthy nondiabetic pregnant controls (n = 21). Methods Maternal serum levels of sRAGE (total circulating pool), N -(carboxymethyl)lysine (CML), hydroimidazolone (methylglyoxal-modified proteins) and total AGEs were measured by immunoassays. Main outcome measures Serum sRAGE and AGEs in pregnant women with T1DM who subsequently developed PE (DM PE+) versus those who remained normotensive (DM PE-). Results In DM PE+ versus DM PE-, sRAGE was significantly lower in the first and second trimesters, prior to the clinical manifestation of PE (P <0.05). Further, reflecting the net sRAGE scavenger capacity, sRAGE:hydroimidazolone was significantly lower in the second trimester (P <0.05) and sRAGE:AGE and sRAGE:CML tended to be lower in the first trimester (P <0.1) in women with T1DM who subsequently developed PE versus those who did not. These conclusions persisted after adjusting for prandial status, glycated haemoglobin (HbA1c), duration of diabetes, parity and mean arterial pressure as covariates. Conclusions In the early stages of pregnancy, lower circulating sRAGE levels, and the ratio of sRAGE to AGEs, may be associated with the subsequent development of PE in women with T1DM. © 2012 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2012 RCOG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical reduction of benzoic acid in the presence and absence of hydrogen (H-2) has been investigated using a 10 mu m diameter platinum microelectrode in four different room temperature ionic liquids (RTILs), namely [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf] and [C(4)mim][BF4], versus Ag/Ag+. In all cases, reductive voltammetry is observed, and is suggested to occur via a CE mechanism in which dissociation of benzoic acid is followed by electron transfer to H+ ultimately forming adsorbed hydrogen. Furthermore, the adsorbed H atoms, formed from the reduction of benzoic acid, could be used to achieve the rapid hydrogenolysis of the organic compound (bis(benzyloxycarbonyl)-L-lysine) on the timescale of the voltammetric technique under moderate conditions (25 degrees C).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We developed an analytic strategy that correlates gene expression and clinical outcomes as a means to identify novel candidate oncogenes operative in breast cancer. This analysis, followed by functional characterization, resulted in the identification of Jumonji Domain Containing 6 (JMJD6) protein as a novel driver of oncogenic properties in breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.