858 resultados para Hip-hop
Resumo:
PURPOSE
The purposes of this study were to:
1) establish inter-instrument reliability between left and right hip accelerometer placement;
2) examine procedural reliability of a walking protocol used to measure physical activity (PA), and;
3) confirm concurrent validity of accelerometers in measuring PA intensity as compared to the gold standard of oxygen consumption measured by indirect calorimetry.
METHODS
Eight children (mean age: 11.9; SD: 3.2, 75% male) with CP (GMFCS levels I-III) wore ActiGraph GT3X accelerometers on each hip and the Cosmed K4b
Resumo:
BACKGROUND: Falls affect approximately one third of community-dwelling older adults each year and have serious health and social consequences. Fear of falling (FOF) (lack of confidence in maintaining balance during normal activities) affects many older adults, irrespective of whether they have actually experienced falls. Both falls and fear of falls may result in restrictions of physical activity, which in turn have health consequences. To date the relation between (i) falls and (ii) fear of falling with physical activity have not been investigated using objectively measured activity data which permits examination of different intensities of activity and sedentary behaviour. METHODS: Cross-sectional study of 1680 men aged 71-92 years recruited from primary care practices who were part of an on-going population-based cohort. Men reported falls history in previous 12 months, FOF, health status and demographic characteristics. Men wore a GT3x accelerometer over the hip for 7 days. RESULTS: Among the 12% of men who had recurrent falls, daily activity levels were lower than among non-fallers; 942 (95% CI 503, 1381) fewer steps/day, 12(95% CI 2, 22) minutes less in light activity, 10(95% CI 5, 15) minutes less in moderate to vigorous PA [MVPA] and 22(95% CI 9, 35) minutes more in sedentary behaviour. 16% (n = 254) of men reported FOF, of whom 52% (n = 133) had fallen in the past year. Physical activity deficits were even greater in the men who reported that they were fearful of falling than in men who had fallen. Men who were fearful of falling took 1766(95% CI 1391, 2142) fewer steps/day than men who were not fearful, and spent 27(95% CI 18, 36) minutes less in light PA, 18(95% CI 13, 22) minutes less in MVPA, and 45(95% CI 34, 56) minutes more in sedentary behaviour. The significant differences in activity levels between (i) fallers and non-fallers and (ii) men who were fearful of falling or not fearful, were mediated by similar variables; lower exercise self-efficacy, fewer excursions from home and more mobility difficulties. CONCLUSIONS: Falls and in particular fear of falling are important barriers to older people gaining health benefits of walking and MVPA. Future studies should assess the longitudinal associations between falls and physical activity.
Resumo:
Objectives Recent research has shown that machine learning techniques can accurately predict activity classes from accelerometer data in adolescents and adults. The purpose of this study is to develop and test machine learning models for predicting activity type in preschool-aged children. Design Participants completed 12 standardised activity trials (TV, reading, tablet game, quiet play, art, treasure hunt, cleaning up, active game, obstacle course, bicycle riding) over two laboratory visits. Methods Eleven children aged 3–6 years (mean age = 4.8 ± 0.87; 55% girls) completed the activity trials while wearing an ActiGraph GT3X+ accelerometer on the right hip. Activities were categorised into five activity classes: sedentary activities, light activities, moderate to vigorous activities, walking, and running. A standard feed-forward Artificial Neural Network and a Deep Learning Ensemble Network were trained on features in the accelerometer data used in previous investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation). Results Overall recognition accuracy for the standard feed forward Artificial Neural Network was 69.7%. Recognition accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition accuracy for the Deep Learning Ensemble Network was 82.6%. For sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%, respectively. Conclusions Ensemble machine learning approaches such as Deep Learning Ensemble Network can accurately predict activity type from accelerometer data in preschool children.
Resumo:
Background Randomised controlled trials may be of limited use to evaluate the multidisciplinary and multimodal interventions required to effectively treat complex patients in routine clinical practice; pragmatic action research approaches may provide a suitable alternative. Methods A multiphase, pragmatic, action research based approach was developed to identify and overcome barriers to nutritional care in patients admitted to a metropolitan hospital hip-fracture unit. Results Four sequential action research cycles built upon baseline data including 614 acute hip-fracture inpatients and 30 purposefully sampled clinicians. Reports from Phase I identified barriers to nutrition screening and assessment. Phase II reported post-fracture protein-energy intakes and intake barriers. Phase III built on earlier results; an explanatory mixed-methods study expanded and explored additional barriers and facilitators to nutritional care. Subsequent changes to routine clinical practice were developed and implemented by the treating team between Phase III and IV. These were implemented as a new multidisciplinary, multimodal nutritional model of care. A quasi-experimental controlled, ‘before-and-after’ study was then used to compare the new model of care with an individualised nutritional care model. Engagement of the multidisciplinary team in a multiphase, pragmatic action research intervention doubled energy and protein intakes, tripled return home discharge rates, and effected a 75% reduction in nutritional deterioration during admission in a reflective cohort of hip-fracture inpatients. Conclusions This approach allowed research to be conducted as part of routine clinical practice, captured a more representative patient cohort than previously reported studies, and facilitated exploration of barriers and engagement of the multidisciplinary healthcare workers to identify and implement practical solutions. This study demonstrates substantially different findings to those previously reported, and is the first to demonstrate that multidisciplinary, multimodal nutrition care reduces intake barriers, delivers a higher proportional increase in protein and energy intake compared with baseline than other published intervention studies, and improves patient outcomes when compared with individualised nutrition care. The findings are considered highly relevant to clinical practice and have high translation validity. The authors strongly encourage the development of similar study designs to investigate complex health problems in elderly, multi-morbid patient populations as a way to evaluate and change clinical practice.
Resumo:
We present a new approach for creating and implementing an ad-hoc underwater acoustic sensor network based on connecting a small processor to the serial port of a commercial CDMA acoustic modem. The processor acts as a "node controller" providing the networking layer that the modems lack. The ad-hoc networking protocol is based on a modified dynamic source routing (DSR) approach and can be configured for maximising information throughput or minimising energy expenditure. The system was developed in simulation and then evaluated during field trials using a 10 node deployment. Experimental results show reliable multi-hop networking under a variety of network configurations, with the added ability to determine internode ranges to within 1.5 m for localisation.
Resumo:
This proposal describes the innovative and competitive lunar payload solution developed at the Queensland University of Technology (QUT)–the LunaRoo: a hopping robot designed to exploit the Moon's lower gravity to leap up to 20m above the surface. It is compact enough to fit within a 10cm cube, whilst providing unique observation and mission capabilities by creating imagery during the hop. This first section is deliberately kept short and concise for web submission; additional information can be found in the second chapter.
Resumo:
I approached the editorial prompt as an opportunity to work through some of the concerns driving my current research on creative labor in emergent or ‘peripheral’ media hubs, centers of production activity outside established media capitals that are nevertheless increasingly integrated into a global production apparatus. It builds from my research on the role that film, television and digital media production have played in the economic and cultural strategies of Glasgow, Scotland, and extends the focus on media work to other locations, including Prague and Budapest. I am particularly drawn to the spatial dynamics at play in these locations and how local producers, writers, directors and crew negotiate a sense of place and creative identity against the flows and counter-flows of capital and culture. This means not only asking questions about the growing ensemble of people, places, firms and policies that make international productions possible, but also studying the more quotidian relationships between media workers and the locations (both near and far) where they now find work. I do not see these tasks as unrelated. On the one hand, such queries underscore how international production depends on a growing constellation of interchangeable parts and is facilitated by various actors whose agendas may or may not converge. On the other hand, these questions also betray an even more complicated dynamic, a process that is shifting the spatial orientation of both location and labor around uneven and contested scales. As local industries reimagine themselves as global players, media practitioners are caught up in a new geography of creative labor: not only are personnel finding it increasingly necessary to hop from place to place to follow the work, but also place itself is changing, as locations morph into nebulous amalgamations of tax rebates, subsidized facilities, production services and (when it still matters) natural beauty.
Resumo:
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies. © 2011 Duncan et al.
Resumo:
This project was a step forward in introducing suitable cooperative diversity transmission techniques for vehicle to vehicle communications. The contributions are intended to aid in the successful implementation of future vehicular safety and autonomous controlling systems. Several protocols were introduced for vehicles to communicate effectively without losing connectivity. This study investigated novel protocols in terms of diversity-multiplexing trade-off and outage for a range of potential vehicular safety and infotainment applications.
Resumo:
It has been 10 years since the seminal paper by Morrison and colleagues reporting the association of alleles of the vitamin D receptor and bone density [1], a paper which arguably kick-started the study of osteoporosis genetics. Since that report there have been literally thousands of osteoporosis genetic studies published, and large numbers of genes have been reported to be associated with the condition [2]. Although some of these reported associations are undoubtedly true, this snow-storm of papers and abstracts has clouded the field to such a great extent that it is very difficult to be certain of the veracity of most genetic associations reported hereto. The field needs to take stock and reconsider the best way forward, taking into account the biology of skeletal development and technological and statistical advances in human genetics, before more effort and money is wasted on continuing a process in which the primary achievement could be said to be a massive paper mountain. I propose in this review that the primary reasons for the paucity of success in osteoporosis genetics has been: •the absence of a major gene effect on bone mineral density (BMD), the most commonly studied bone phenotype; •failure to consider issues such as genetic heterogeneity, gene–environment interaction, and gene–gene interaction; •small sample sizes and over-optimistic data interpretation; and •incomplete assessment of the genetic variation in candidate genes studied.
Resumo:
We investigated whether polymorphisms in PTHR1 are associated with bone mineral density (BMD), to determine whether the association of this gene with BMD was due to effects on attainment of peak bone mass or effects on subsequent bone loss. The PTHR1 gene, including its 14 exons, their exon-intron boundaries, and 1,500 bp of its promoter region, was screened for polymorphisms by denaturing high-performance liquid chromatography (dHPLC) and sequencing in 36 osteoporotic cases. Eleven single-nucleotide polymorphisms (SNPs), one tetranucleotide repeat, and one tetranucleotide deletion were identified. A cohort of 634 families, including 1,236 men (39%) and 1,926 women (61%) ascertained with probands with low BMD (Z< -2.0) and the Children in Focus subset of the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort (785 unrelated individuals, mean age 118 months), were genotyped for the five most informative SNPs (minor allele frequency >5%) and the tetranucleotide repeat. In our osteoporosis families, association was noted between lumbar spine BMD and alleles of a known functional tetranucleotide repeat (U4) in the PTHR1 promoter region (P = 0.042) and between two and three marker haplotypes of PTHR1 polymorphisms with lumbar spine, femoral neck, and total hip BMD (P = 0.021-0.047). This association was restricted to the youngest tertile of the population (age 16-39 years, P = 0.013-0.048). A similar association was found for the ALSPAC cohort: two marker haplotypes of SNPs A48609T and C52813T were associated with height (P = 0.006) and total body less head BMD (P = 0.02), corrected for age and gender, confirming the family findings. These findings suggest a role for PTHR1 variation in determining peak BMD.
Resumo:
PURPOSE: To compare pressures generated by 2 different cement pressurisers at various locations in the proximal femur. METHODS: Two groups of 5 synthetic femurs were used, and 6 pressure sensors were placed in the femur at 20-mm intervals proximally to distally. Cement was filled into the femoral canal retrogradely using a cement gun with either the half-moon pressuriser or the femoral canal pressuriser. Maximum pressures and pressure time integrals (cumulative pressure over time) of the 2 pressurisers were compared. RESULTS: At all sensors, the half-moon pressuriser produced higher maximum pressures and pressure time integrals than the femoral canal pressuriser, but the difference was significant only at sensor 1 (proximal femur). This may result in reduced cement interdigitation in the proximal femur. CONCLUSION: The half-moon pressuriser produced higher maximum cementation pressures and pressure time integrals than the femoral canal pressuriser in the proximal femur region, which is critical for rotational stability of the implant and prevention of implant fracture. KEYWORDS: arthroplasty, replacement, hip; bone cements; femur
Resumo:
We evaluated the patterns of physical activity (PA) and the prevalence of physical inactivity among Sri Lankan adults with diabetes mellitus. Data were collected as part of a wider cross-sectional national study on diabetes in Sri Lanka. PA during the past week was assessed using the short version of the IPAQ. Overall prevalence of physical inactivity was 13.9%. Females (3091 ± 2119) had a significantly higher mean weekly total MET minutes than males (2506 ± 2084) (p < 0.01). Inactivity of those residing in urban (17.2%) areas was higher than rural (12.6%) in all adults. Participants from Moor ethnicity were more inactive compared to others. Adults who were physically active had significantly low waist and hip circumferences, BMI and systolic blood pressure.
Resumo:
This study investigated a new performance indicator to assess climbing fluency (smoothness of the hip trajectory and orientation of a climber using normalized jerk coefficients) to explore effects of practice and hold design on performance. Eight experienced climbers completed four repetitions of two, 10-m high routes with similar difficulty levels, but varying in hold graspability (holds with one edge vs holds with two edges). An inertial measurement unit was attached to the hips of each climber to collect 3D acceleration and 3D orientation data to compute jerk coefficients. Results showed high correlations (r = .99, P < .05) between the normalized jerk coefficient of hip trajectory and orientation. Results showed higher normalized jerk coefficients for the route with two graspable edges, perhaps due to more complex route finding and action regulation behaviors. This effect decreased with practice. Jerk coefficient of hip trajectory and orientation could be a useful indicator of climbing fluency for coaches as its computation takes into account both spatial and temporal parameters (ie, changes in both climbing trajectory and time to travel this trajectory)
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Autonomous vehicles are able to share information about the local traffic state in real time, which could result in a better reaction to the mechanism of traffic jam formation. An upstream single-hop radio broadcast network can improve the perception of each cooperative driver within a specific radio range and hence the traffic stability. The impact of vehicle to vehicle cooperation on the onset of traffic congestion is investigated analytically and through simulation. A next generation simulation field dataset is used to calibrate the full velocity difference car-following model, and the MOBIL lane-changing model is implemented. The robustness of the calibration as well as the heterogeneity of the drivers is discussed. Assuming that congestion can be triggered either by the heterogeneity of drivers' behaviours or abnormal lane-changing behaviours, the calibrated car-following model is used to assess the impact of a microscopic cooperative law on egoistic lane-changing behaviours. The cooperative law can help reduce and delay traffic congestion and can have a positive effect on safety indicators.