955 resultados para High-temperatures


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The seaweed Gracilaria domingensis is a common species in the coast of Rio Grande do Norte. This species lives in the intertidal zone, where colour strains (red, green and brown) co-occur during the whole year. Seaweeds that live in this region are exposed to daily changes and to the rhythm of the tide. During the low tide they are exposed to dissection, hiper-or hipo-osmotic shock, high temperatures and high irradiance. The aim of this study was to analyze whether the pigment and protein content of the colour strains of G. domingensis is affected by some environmental parameters in a temporal scale. The seaweeds were collected during 10 months in the seashore of Rio do Fogo (RN). The total soluble proteins and the phycobiliprotein were extracted in phosphate buffer and the carotenoids were analyzed by a standardized method through HPLC-UV. The pigments analysis showed that phycoerithrin is the most abundant pigment in the three strains. This pigment was strongly correlated with nitrogen and the photosynthetically active radiation. Chlorophyll presented higher concentrations than carotenoids during the whole, but the ratio carotenoid/chlorophyll-a was modified by incident radiation. The most abundant carotenoid was ß-carotene and zeaxanthin, which had higher concentrations in the higher radiation months. The concentration increase of zeaxanthin in this period indicated a photoprotective response of the seaweed. The three strains presented a pigment profile that indicates different radiation tolerance profile. Our results pointed that the green strain is better adapted to high irradiance levels than the red and brown strains

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reproductive ecology of fish plays a key role both for rational exploitation methods and for protective measures of natural stocks. The purpose of this study was to analyze the reproductive aspects of the damsel-fish, Stegastes fuscus, during October 2004 to September 2005, in the coastal rocky reefs of Búzios Beach, Nísia Floresta, RN. Fish were captured using hooks and hand nets, during low tide. Reproduction was determined using sexual ratio, mean length of first maturation (L50), absolute fecundity and macroscopic characteristics of gonads. The following parameters were related to gonadosomatic index (GSI): condition factor (CF), hepatosomatic index (HSI), rain fall and temperature. In relation to sex distribution, it was observed that 78% were females and 22% were males. The L50 was 6.2 cm for females and 7.0 for males. Average fecundity was 6832 oocytes. Results showed that S. fuscus had better body condition in the months prior to spawning, particularly during initial and intermediate stages of maturation. Five stages of gonadal maturation were identified through macroscopic analysis: immature, in maturation, mature, spent and resting. The HSI was inversely related to the GSI. This was possibly due to the reproductive cycle of this species which was associated to the dry period of this region. During this period, low rain fall and high temperatures provide an propitious reproductive condition for the study species

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous work has shown that high-temperature short-term spike thermal annealing of hydrogenated amorphous silicon (a-Si:H) photovoltaic thermal (PVT) systems results in higher electrical energy output. The relationship between temperature and performance of a-Si:H PVT is not simple as high temperatures during thermal annealing improves the immediate electrical performance following an anneal, but during the anneal it creates a marked drop in electrical performance. In addition, the power generation of a-Si:H PVT depends on both the environmental conditions and the Staebler-Wronski Effect kinetics. In order to improve the performance of a-Si:H PVT systems further, this paper reports on the effect of various dispatch strategies on system electrical performance. Utilizing experimental results from thermal annealing, an annealing model simulation for a-Si:Hbased PVT was developed and applied to different cities in the U.S. to investigate potential geographic effects on the dispatch optimization of the overall electrical PVT systems performance and annual electrical yield. The results showed that spike thermal annealing once per day maximized the improved electrical energy generation. In the outdoor operating condition this ideal behavior deteriorates and optimization rules are required to be implemented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grapevine is an extremely important crop worldwide.In southern Europe, post-flowering phases of the growth cycle can occur under high temperatures, excessive light, and drought conditions at soil and/or atmospheric level. In this study, we subjected greenhouse grown grapevine, variety Aragonez, to two individual abiotic stresses, water deficit stress(WDS), and heat stress (HS). The adaptation of plants to stress is a complex response triggered by cascades of molecular net works involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Approaches such as array-based transcript profiling allow assessing the expression of thousands of genes in control and stress tissues. Using microarrays, we analyzed the leaf transcriptomic profile of the grapevine plants. Photosynthesis measurements verified that the plants were significantly affected by the stresses applied. Leaf gene expression was obtained using a high-throughput transcriptomic grapevine array, the 23K custom-made Affymetrix Vitis GeneChip. We identified 1,594 genes as differentially expressed between control and treatments and grouped them into ten major functional categories using MapMan software. The transcriptome of Aragonez was more significantly affected by HS when compared with WDS. The number of genes coding for heat-shock proteins and transcription factors expressed solely in response to HS suggesting their expression as unique signatures of HS. However, across-talk between the response pathways to both stresses was observed at the level of AP2/ERF transcription factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The occurrence of OsHV-1, a herpes virus causing mass mortality in the Pacific oyster Crassostrea gigas was investigated with the aim to select individuals with different susceptibility to the infection. Naïve spat transferred to infected areas and juveniles currently being grown at those sites were analyzed using molecular and histology approaches. The survey period distinguishes itself by very warm temperatures reaching up to 3.5°C above the average. The virus was not detected in the virus free area although a spread of the disease could be expected due to high temperatures. Overall mortality, prevalence of infection and viral load was higher in spat confirming the higher susceptibility in early life stages. OsHV-1 and oyster mortality were detected in naïve spat after 15 days of cohabitation with infected animals. Although, infection was associated with mortality in spat, the high seawater temperatures could also be the direct cause of mortality at the warmest site. One stock of juveniles suffered an event of abnormal mortality that was significantly associated with OsHV-1 infection. Those animals were infected with a previously undescribed microvariant whereas the other stocks were infected with OsHV-1 μVar. Cell lesions due to the infection were observed by histology and true infections were corroborated by in situ hybridization. Survivors from the natural outbreak were exposed to OsHV-1 μVar by intramuscular injection and were compared to naïve animals. The survival rate in previously exposed animals was significantly higher than in naïve oysters. Results derived from this study allowed the selection of animals that might possess interesting characteristics for future analysis on OsHV-1 resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objetivo: Establecer la relación entre la exposición ocupacional a altas temperaturas o sobrecarga térmica con el comportamiento fisiológico, metabólico y electrocardiográfico. Métodos: estudio de corte transversal, donde se incluyeron dos grupos (expuesto y no expuesto a altas temperaturas) en una empresa minera, en el departamento de Boyacá, Colombia, en el año 2016. El número de participantes fue de 160 trabajadores del género masculino, grupo expuesto (n=86) y grupo no expuesto (n=74). La exposición ocupacional a sobrecarga térmica se evaluó con el índice de temperatura de globo y bulbo húmedo (TGBH), el comportamiento fisiológico con el índice de costo cardiaco relativo (ICCR) con mediciones de frecuencia cardiaca (FC), el comportamiento metabólico con la determinación del colesterol total (CT), colesterol de alta densidad (C-HDL), colesterol de baja densidad (C-LDL), triglicéridos (TG) y glicemia basal (GL). Las alteraciones electrocardiográficas con la toma de Electrocardiograma de 12 derivaciones. También fueron evaluadas variables antropométricas, tensión arterial, hábitos y antecedentes de enfermedad cardiovascular en ambos grupos. Resultados: incrementos significativos del ICCR (p<0.001) y la carga física (p<0.001) fueron encontrados en los trabajadores expuestos a altas temperaturas. Los índices lipídicos y glicemia, así como los antecedentes personales cardiovasculares, IMC, consumo de cigarrillo y consumo de alcohol, no mostraron significancia. El antecedente familiar de ACV (p=0.043) y el EKG alterado (p=0.011) mostraron una asociación significativa con la exposición a altas temperaturas. El modelo de regresión lineal múltiple explicó la relación entre el incremento del ICCR y la exposición a altas temperaturas (β=4,213, IC 95%: 1.57,6.85) ajustado por variables fisiológicas y electrocardiográficas. Conclusiones: La exposición ocupacional a altas temperaturas, presenta asociación con las alteraciones cardiovasculares a nivel fisiológico y electrocardiográfico, aumentando el ICCR y la carga física de trabajo (GE trabajo).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Greenhouse production is a very important activity in the West region of Portugal, with an area of approximately 800 ha where the regular production consists in two crops per year, one in winter-spring and the other in summer-autumn. Many growers are now prepared to better exploit market opportunities, since they know that the big export window opportunity is from June to September, when the production is difficult in other regions of south due to high temperatures. Grower’s use new and more productive varieties, either in soil or hydroponic systems, mostly in unheated greenhouses, naturally ventilated, and equipped with modern fertigation systems. Greenhouse production causes some environmental impacts due to the high use of inputs. Several improvements in technologies and crop practices may contribute to increase the use efficiency of resources, decreasing the negative environmental impacts. Greenhouse vegetable production in Northern EU countries is based on the supply of heating and differs significantly from the production system in the Southern EU countries. In the Northern countries, direct energy inputs, mostly for heating, are predominant while in the South the indirect energy input is also important, mainly associated with fertilizers, plastic cover materials and other auxiliary materials. The main objective of this work was to characterise the greenhouse production systems in the West region of Portugal, in order to evaluate the energetic consumptions (direct and indirect), the GHH emissions, the production costs and the farmer’s income. With this work the mostly important inputs were identified, allowing proposing alternative measures to improve efficiency and sustainability. All the data was obtained by surveys performed directly with growers, previously selected to be representative of the crop practices and greenhouse type of the region. However, more research should be performed in order to develop and to test technologies capable to improve resources use efficiency in greenhouse production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examines the importance of thermal refugia along the majority of the geographical range of a key inter- tidal species (Patella vulgata Linnaeus, 1758) on the Atlantic coast of Europe. We asked whether differences between sun-exposed and shaded microhabitats were responsible for differences in physiological stress and ecological perfor- mance and examined the availability of refugia near equatorial range limits. Thermal differences between sun- exposed and shaded microhabitats are consistently associated with differences in physiological performance, and the frequency of occurrence of high temperatures is most probably limiting the maximum population densities sup- ported at any given place. Topographical complexity provides thermal refugia throughout most of the distribution range, although towards the equatorial edges the magnitude of the amelioration provided by shaded microhabitats is largely reduced. Importantly, the limiting effects of temperature, rather than being related to latitude, seem to be tightly associated with microsite variability, which therefore is likely to have profound effects on the way local popu- lations (and consequently species) respond to climatic changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF), which is intrinsically present or may be introduced in soils by inoculation, is an example of natural and renewable resource to increase plant nutrient uptake. This kind of fungi produces structures (hyphae, arbuscles and sometimes vesicles) inside the plant root cortex. This mutualistic relationship promotes plant gains in terms of water and nutrient absorption (mainly phosphorus). Biochar can benefit plant interaction with AMF, however, it can contain potentially toxic compounds such as heavy metals and organic compounds (e.g. dioxins, furans and polycyclic aromatic hydrocarbons), depending on the feedstock and pyrolysis conditions, which may damage organisms. For these reasons, the present work will approach the impacts of biochar application on soil attributes, AMF-plant symbiosis and its responses in plant growth and phosphorus uptake. Eucalyptus biochar produced at high temperatures increases sorghum growth; symbiosis with AMF; and enhances spore germination. Enhanced plant growth in the presence of high temperature biochar and AMF is a response of root branching stimulated by an additive effect between biochar characteristics and root colonization. Biochar obtained at low temperature reduces AMF spore germination; however it does not affect plant growth and symbiosis in soil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Starches are applied in several fields of industry. Amylose and amylopectin (natural polymers) constitute the starch in vegetable cells. In some processes native starches cannot support high stress conditions (high temperatures/acidity). Then, modification methods are developed aiming the improving of starch technological utilization. Oxidative modification with H2O2 has been the subject of many researches. UV rays as well microwave irradiation can be used. The aim was to confirm possible thermogravimetric alterations in native cassava starch (A) granules due to a double starch modification: 1st step) H2O2 standard solutions 0.1 mol L-1 (B), 0.2 mol L-1 (C) and 0.3 mol L-1 (D) and UV rays exposure for 1h; 2nd step) microwave irradiation for 5 min. The results of thermogravimetric curves (TG-DTA) show that the behaviors of the starch proprieties were modified. Highlighting, the modified samples C and D showed a decrease on the thermal stability step. This alteration turned them suitable to many field of industry like the paper one.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After initial efforts in the late 1980s, the interest in thermochemiluminescence (TCL) as an effective detection technique has gradually faded due to some drawbacks, such as the high temperatures required to trigger the light emission and the relatively low intensities, which determined a poor sensitivity. Recent advances made with the adoption of variably functionalized 1,2-dioxetanes as innovative luminophores, have proved to be a promising approach for the development of reagentless and ultrasensitive detection methods exploitable in biosensors by using TCL compounds as labels, as either single molecules or included in modified nanoparticles. In this PhD Thesis, a novel class of N-substituted acridine-containing 1,2-dioxetanes was designed, synthesized, and characterized as universal TCL probes endowed with optimal emission-triggering temperatures and higher detectability particularly useful in bioanalytical assays. The different decorations introduced by the insertion of both electron donating (EDGs) and electron withdrawing groups (EWGs) at the 2- and 7-positions of acridine fluorophore was found to profoundly affect the photophysical properties and the activation parameters of the final 1,2-dioxetane products. Challenges in the synthesis of 1,2-dioxetanes were tackled with the recourse to continuous flow photochemistry to achieve the target parent compound in high yields, short reaction time, and easy scalability. Computational studies were also carried out to predict the olefins reactivity in the crucial photooxygenation reaction as well as the final products stability. The preliminary application of TCL prototype molecule has been performed in HaCaT cell lines showing the ability of these molecules to be detected in real biological samples and cell-based assays. Finally, attempts on the characterization of 1,2-dioxetanes in different environments (solid state, optical glue and nanosystems) and the development of bioconjugated TCL probes will be also presented and discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research project is focused on the investigation of the polymorphism of crystalline molecular material for organic semiconductor applications under non-ambient conditions, and the solid-state characterization and crystal structure determination of the different polymorphic forms. In particular, this research project has tackled the investigation and characterization of the polymorphism of perylene diimides (PDIs) derivatives at high temperatures and pressures, in particular N,N’-dialkyl-3,4,9,10-perylendiimide (PDI-Cn, with n = 5, 6, 7, 8). These molecules are characterized by excellent chemical, thermal, and photostability, high electron affinity, strong absorption in the visible region, low LUMO energies, good air stability, and good charge transport properties, which can be tuned via functionalization; these features make them promising n-type organic semiconductor materials for several applications such as OFETs, OPV cells, laser dye, sensors, bioimaging, etc. The thermal characterization of PDI-Cn was carried out by a combination of differential scanning calorimetry, variable temperature X-ray diffraction, hot-stage microscopy, and in the case of PDI-C5 also variable temperature Raman spectroscopy. Whereas crystal structure determination was carried out by both Single Crystal and Powder X-ray diffraction. Moreover, high-pressure polymorphism via pressure-dependent UV-Vis absorption spectroscopy and high-pressure Single Crystal X-ray diffraction was carried out in this project. A data-driven approach based on a combination of self-organizing maps (SOM) and principal component analysis (PCA) is also reported was used to classify different π-stacking arrangements of PDI derivatives into families of similar crystal packing. Besides the main project, in the framework of structure-property analysis under non-ambient conditions, the structural investigation of the water loss in Pt- and Pd- based vapochromic potassium/lithium salts upon temperature, and the investigation of structure-mechanical property relationships in polymorphs of a thienopyrrolyldione endcapped oligothiophene (C4-NT3N) are reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laser-based Powder Bed Fusion (L-PBF) technology is one of the most commonly used metal Additive Manufacturing (AM) techniques to produce highly customized and value-added parts. The AlSi10Mg alloy has received more attention in the L-PBF process due to its good printability, high strength/weight ratio, corrosion resistance, and relatively low cost. However, a deep understanding of the effect of heat treatments on this alloy's metastable microstructure is still required for developing tailored heat treatments for the L-PBF AlSi10Mg alloy to overcome the limits of the as-built condition. Several authors have already investigated the effects of conventional heat treatment on the microstructure and mechanical behavior of the L-PBF AlSi10Mg alloy but often overlooked the peculiarities of the starting supersatured and ultrafine microstructure induced by rapid solidification. For this reason, the effects of innovative T6 heat treatment (T6R) on the microstructure and mechanical behavior of the L-PBF AlSi10Mg alloy were assessed. The short solution soaking time (10 min) and the relatively low temperature (510 °C) reduced the typical porosity growth at high temperatures and led to a homogeneous distribution of fine globular Si particles in the Al matrix. In addition, it increased the amount of Mg and Si in the solid solution available for precipitation hardening during the aging step. The mechanical (at room temperature and 200 °C) and tribological properties of the T6R alloy were evaluated and compared with other solutions, especially with an optimized direct-aged alloy (T5 alloy). Results showed that the innovative T6R alloy exhibits the best mechanical trade-off between strength and ductility, the highest fatigue strength among the analyzed conditions, and interesting tribological behavior. Furthermore, the high-temperature mechanical performances of the heat-treated L-PBF AlSi10Mg alloy make it suitable for structural components operating in mild service conditions at 200 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis analyzes the impact of heat extremes in urban and rural environments, considering processes related to severely high temperatures and unusual dryness. The first part deals with the influence of large-scale heatwave events on the local-scale urban heat island (UHI) effect. The temperatures recorded over a 20-year summer period by meteorological stations in 37 European cities are examined to evaluate the variations of UHI during heatwaves with respect to non-heatwave days. A statistical analysis reveals a negligible impact of large-scale extreme temperatures on the local daytime urban climate, while a notable exacerbation of UHI effect at night. A comparison with the UrbClim model outputs confirms the UHI strengthening during heatwave episodes, with an intensity independent of the climate zone. The investigation of the relationship between large-scale temperature anomalies and UHI highlights a smooth and continuous dependence, but with a strong variability. The lack of a threshold behavior in this relationship suggests that large-scale temperature variability can affect the local-scale UHI even in different conditions than during extreme events. The second part examines the transition from meteorological to agricultural drought, being the first stage of the drought propagation process. A multi-year reanalysis dataset involving numerous drought events over the Iberian Peninsula is considered. The behavior of different non-parametric standardized drought indices in drought detection is evaluated. A statistical approach based on run theory is employed, analyzing the main characteristics of drought propagation. The propagation from meteorological to agricultural drought events is found to develop in about 1-2 months. The duration of agricultural drought appears shorter than that of meteorological drought, but the onset is delayed. The propagation probability increases with the severity of the originating meteorological drought. A new combined agricultural drought index is developed to be a useful tool for balancing the characteristics of other adopted indices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipid peroxidation is a complex mechanism that causes the degradation of lipid material of both industrial and biological significance. During processing, it is known that thermal stress produces oxidation and polymerization of oils. Additionally, biological lipids with both structural and bioactive roles are prone to peroxidation, which can have pathogenic effects including cancer and long-term degenerative disorders. To create innovative strategies to slow down the deterioration of lipids, it is crucial to improve our understanding of oxidation reactions and kinetics. To this purpose, Chapter II of this thesis focuses on the kinetic study of the oxidation reactions that take place during the thermal processing of bio-oils for industrial application. Through a new method it was possible to evaluate the kinetic parameters of oxidation of various lipid materials. This allowed us to distinguish between the different lipid materials based on their intrinsic properties. The effect of 18 antioxidants from the major families of natural and synthetic phenols were studied using the same methodology in order to acquire crucial data for enhancing the antioxidant activity of phenols based on structure-activity at high temperatures. Finally, it has been described how the antioxidant activity of α-tocopherol, revealed to be scarce in our conditions, can be improved in the presence of gamma-terpinene, through a synergistic action. Chapter III describes the synthesis and study of the antioxidant activity of polydopamine nanoparticles, in order to clarify the unclear mechanism of action of this material. Finally, in Chapter IV it was reported how the gamma-terpinene strongly inhibits the peroxidation of unsaturated lipids in heterogeneous model systems (micelles and liposomes) by forming hydroperoxyl radicals which diffuse outside the lipid nucleus, blocking the propagation of the chain radical. Furthermore, gamma-terpinene shows a very potent protective activity against ferroptosis being effective in the nanomolar range in the human neuroblastoma cell model.