996 resultados para Glycine betaine
Resumo:
Resumo: O objetivo deste trabalho foi avaliar o efeito de sistemas de plantio e irrigação suplementar em faixas sobre o rendimento de grãos de soja, em áreas com presença de camada compactada próxima à superfície do solo. Dois experimentos foram realizados em blocos ao acaso, em faixas, com quatro repetições, no Estado do Rio Grande do Sul. O experimento 1 foi realizado em Santa Maria, correspondente às safras de 2013/2014 e 2014/2015; e o experimento 2, em Formigueiro, na safra 2013/2014. Os tratamentos consistiram dos fatores A e D. O fator A considerou os seguintes sistemas de plantio: A1, semeadura com discos duplos desencontrados; A2, semeadura com disco ondulado de 12 ondas; A3, semeadura com haste sulcadora; A4, semeadura com haste sulcadora e um mecanismo de acomodação do solo; A5, semeadura em microcamalhão; e A6, escarificação do solo e semeadura com disco duplo desencontrado. O fator D consistiu de tratamentos com ou sem irrigação. Na safra 2014/2015, alterou-se o fator A4 por haste desencontrada a 5 cm da linha de semeadura. O experimento 2 constituiu-se apenas do fator A do experimento 1, sem o tratamento microcamalhão. Os sistemas com escarificação do solo e haste sulcadora são os que proporcionam maior rendimento de grãos. A irrigação realizada em condições de umidade do solo abaixo de 60% da capacidade de campo aumenta o rendimento de grãos.
Resumo:
The aim of this thesis was to study the retentions of an organic acid and neutral components separately and in mixed solutions. The literature part of this study deals with factors affecting retention in nanofiltration. Nanofiltration is a complex process where many factors are affecting retention depending on the solution, molecule and membrane properties and their interactions. Concentrated model solutions were filtered with Desal-5 DL, NTR 7470 and NF 270 nanofiltration membranes in the experimental part of this work. The effects of pH, pressure and flux on retention were studied. Citric acid was used as the organic acid and the neutral components were inositol, betaine and xylitol. All components were filtered separately. The neutral compounds were also filtered together with citric acid. The filtrations were performed at Lappeenranta University of Technology using laboratory scale nanofiltration equipment. The retentions of neutral components were constant when filtered separately at different pH values. Citric acid had a significant influence on the retention of the neutral compounds. The retentions of neutral compounds decreased significantly when pH increased. The neutral compounds did not have any affect on the retention of citric acid. The retentions of model compounds increased when the flux increased.
Concerted changes in N and C primary metabolism in alfalfa (Medicago sativa) under water restriction
Resumo:
Although the mechanisms of nodule N2 fixation in legumes are now well documented, some uncertainty remains on the metabolic consequences of water deficit. In most cases, little consideration is given to other organs and, therefore, the coordinated changes in metabolism in leaves, roots, and nodules are not well known. Here, the effect of water restriction on exclusively N2-fixing alfalfa (Medicago sativa L.) plants was investigated, and proteomic, metabolomic, and physiological analyses were carried out. It is shown that the inhibition of nitrogenase activity caused by water restriction was accompanied by concerted alterations in metabolic pathways in nodules, leaves, and roots. The data suggest that nodule metabolism and metabolic exchange between plant organs nearly reached homeostasis in asparagine synthesis and partitioning, as well as the N demand from leaves. Typically, there was (i) a stimulation of the anaplerotic pathway to sustain the provision of C skeletons for amino acid (e.g. glutamate and proline) synthesis; (ii) re-allocation of glycolytic products to alanine and serine/glycine; and (iii) subtle changes in redox metabolites suggesting the implication of a slight oxidative stress. Furthermore, water restriction caused little change in both photosynthetic efficiency and respiratory cost of N2 fixation by nodules. In other words, the results suggest that under water stress, nodule metabolism follows a compromise between physiological imperatives (N demand, oxidative stress) and the lower input to sustain catabolism.
Resumo:
Weak acid cation exchange (WAC) resins are used in the chromatographic separation of betaine from vinasse, a by-product of sugar industry. The ionic form of the resin determines the elution time of betaine. When a WAC-resin is in hydrogen form, the retention time of betaine is the longest and betaine elutes as the last component of vi-nasse from the chromatographic column. If the feed solution contains salts and its pH is not acidic enough to keep the resin undissociated, the ionic form of the hydrogen form resin starts to alter. Vinasse contains salts and its pH is around 5, it also contains weak acids. To keep the metal ion content (Na/H ratio) of the resin low enough to ensure successful separation of betaine, acid has to be added to either eluent (water) or vinasse. The aim of the present work was to examine by laboratory experiments which option requires less acid. Also the retention mechanism of betaine was investigated by measuring retention volumes of acetic acid and choline in different Na/H ratios of the resin. It was found that the resulting ionic form of the resin is the same regardless of whether the regeneration acid is added to the eluent or the feed solution (vinasse). Be-sides the salt concentration and the pH of vinasse, also the concentration of weak acids in the feed affects the resulting ionic form of the resin. The more buffering capacity vinasse has, the more acid is required to keep the ionic form of the resin desired. Vinasse was found to be quite strong buffer solution, which means relatively high amounts of acid are required to prevent the Na/H ratio from increasing too much. It is known that the retention volume of betaine decreases significantly, when the Na/H ratio increases. This is assumed to occur, because the amount of hydrogen bonds between the carboxylic groups of betaine and the resin decreases. Same behavior was not found with acetic acid. Choline has the same molecular structure as betaine, but instead of carboxylic group it has hydroxide group. The retention volume of choline increased as the Na/H ratio of the resin increased, because of the ion exchange reaction between choline cation and dissociated carboxylic group of the resin. Since the retention behavior of choline on the resin is opposite to the behavior of be-taine, the strong affinity of betaine towards hydrogen form WAC-resin has to be based on its carboxylic group. It is probable that the quaternary ammonium groups also affect the behavior of the carboxylic groups of betaine, causing them to form hydrogen bonds with the carboxylic groups of the resin.
Resumo:
Viruses are among the most important pathogens present in water contaminated with feces or urine and represent a serious risk to human health. Four procedures for concentrating viruses from sewage have been compared in this work, three of which were developed in the present study. Viruses were quantified using PCR techniques. According to statistical analysis and the sensitivity to detect human adenoviruses (HAdV), JC polyomaviruses (JCPyV) and noroviruses genogroup II (NoV GGII): (i) a new procedure (elution and skimmed-milk flocculation procedure (ESMP)) based on the elution of the viruses with glycine-alkaline buffer followed by organic flocculation with skimmed-milk was found to be the most efficient method when compared to (ii) ultrafiltration and glycine-alkaline elution, (iii) a lyophilization-based method and (iv) ultracentrifugation and glycine-alkaline elution. Through the analysis of replicate sewage samples, ESMP showed reproducible results with a coefficient of variation (CV) of 16% for HAdV, 12% for JCPyV and 17% for NoV GGII. Using spiked samples, the viral recoveries were estimated at 30-95% for HAdV, 55-90% for JCPyV and 45-50% for NoV GGII. ESMP was validated in a field study using twelve 24-h composite sewage samples collected in an urban sewage treatment plant in the North of Spain that reported 100% positive samples with mean values of HAdV, JCPyV and NoV GGII similar to those observed in other studies. Although all of the methods compared in this work yield consistently high values of virus detection and recovery in urban sewage, some require expensive laboratory equipment. ESMP is an effective low-cost procedure which allows a large number of samples to be processed simultaneously and is easily standardizable for its performance in a routine laboratory working in water monitoring. Moreover, in the present study, a CV was applied and proposed as a parameter to evaluate and compare the methods for detecting viruses in sewage samples.
Resumo:
Viruses are among the most important pathogens present in water contaminated with feces or urine and represent a serious risk to human health. Four procedures for concentrating viruses from sewage have been compared in this work, three of which were developed in the present study. Viruses were quantified using PCR techniques. According to statistical analysis and the sensitivity to detect human adenoviruses (HAdV), JC polyomaviruses (JCPyV) and noroviruses genogroup II (NoV GGII): (i) a new procedure (elution and skimmed-milk flocculation procedure (ESMP)) based on the elution of the viruses with glycine-alkaline buffer followed by organic flocculation with skimmed-milk was found to be the most efficient method when compared to (ii) ultrafiltration and glycine-alkaline elution, (iii) a lyophilization-based method and (iv) ultracentrifugation and glycine-alkaline elution. Through the analysis of replicate sewage samples, ESMP showed reproducible results with a coefficient of variation (CV) of 16% for HAdV, 12% for JCPyV and 17% for NoV GGII. Using spiked samples, the viral recoveries were estimated at 30-95% for HAdV, 55-90% for JCPyV and 45-50% for NoV GGII. ESMP was validated in a field study using twelve 24-h composite sewage samples collected in an urban sewage treatment plant in the North of Spain that reported 100% positive samples with mean values of HAdV, JCPyV and NoV GGII similar to those observed in other studies. Although all of the methods compared in this work yield consistently high values of virus detection and recovery in urban sewage, some require expensive laboratory equipment. ESMP is an effective low-cost procedure which allows a large number of samples to be processed simultaneously and is easily standardizable for its performance in a routine laboratory working in water monitoring. Moreover, in the present study, a CV was applied and proposed as a parameter to evaluate and compare the methods for detecting viruses in sewage samples.
Resumo:
Morphological and spectroscopic studies of Sr2CeO4 blue phosphor in the form of fine particles prepared from a powdered multi-component precursor, via a combustion method, are reported. Samples were also prepared through a solid-state reaction and from a polymeric precursor for comparison. Citric acid or glycine as fuels in the combustion method lead to a mixture which is heated at 950 ºC for 4 h, resulting in spheroidal particles with a diameter between 250-550 nm. Samples from the polymeric precursor result in spheroidal particles (350-550 nm) and from the solid-state reaction in irregular particles (~ 5 mum). Therefore, the combustion method is adequate for preparation of Sr2CeO4 in the form of spherical fine particles.
Resumo:
In the present paper we studied the recoveries of glyphosate, N-(phosphonomethyl)glycine (GLY) and its major metabolite, (aminomethyl)phosphonic acid (AMPA) in soil using national (Brazilian) ion-exchange resins, derivatization by a mixture of trifluoroacetic anhydride and trifluoroethanol and analyses by GC-MS. The quantification limits were 12 ng.g-1 for both compounds and the methodology showed a range of recuperation from 85 to 94% with coefficients of variation (CV) ranging from 4.07 to 6.91% for GLY. For AMPA, the mean recoveries ranged from 87 to 102% with CVs ranging from 5.81 to 6.99%. Additional studies showed that, due to the instability of the derivatized compounds, they must be analysed keeping constant time between derivatization and analysis, preferably less than 24 h.
Resumo:
Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids.We analyzed whether reduced urea excretion was a consequence of higherNO ; (nitrite,nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion.There were no differences in plasma nitrate or nitrite. NO and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithinewhen comparedwith controls,whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.
Resumo:
Nontypable Haemophilus influenzae (NTHi) has emerged as an important opportunistic pathogen causing infection in adults suffering obstructive lung diseases. Existing evidence associates chronic infection by NTHi to the progression of the chronic respiratory disease, but specific features of NTHi associated with persistence have not been comprehensively addressed. To provide clues about adaptive strategies adopted by NTHi during persistent infection, we compared sequential persistent isolates with newly acquired isolates in sputa from six patients with chronic obstructive lung disease. Pulse field gel electrophoresis (PFGE) identified three patients with consecutive persistent strains and three with new strains. Phenotypic characterisation included infection of respiratory epithelial cells, bacterial self-aggregation, biofilm formation and resistance to antimicrobial peptides (AMP). Persistent isolates differed from new strains in showing low epithelial adhesion and inability to form biofilms when grown under continuous-flow culture conditions in microfermenters. Self-aggregation clustered the strains by patient, not by persistence. Increasing resistance to AMPs was observed for each series of persistent isolates; this was not associated with lipooligosaccharide decoration with phosphorylcholine or with lipid A acylation. Variation was further analyzed for the series of three persistent isolates recovered from patient 1. These isolates displayed comparable growth rate, natural transformation frequency and murine pulmonary infection. Genome sequencing of these three isolates revealed sequential acquisition of single-nucleotide variants in the AMP permease sapC, the heme acquisition systems hgpB, hgpC, hup and hxuC, the 3-deoxy-D-manno-octulosonic acid kinase kdkA, the long-chain fatty acid transporter ompP1, and the phosphoribosylamine glycine ligase purD. Collectively, we frame a range of pathogenic traits and a repertoire of genetic variants in the context of persistent infection by NTHi.
Resumo:
Copper electrode can be used for determination of complexing compounds through complexation reactions between Cu(II) and the analites. In this work some studies with three compounds were performed: glycine (precursor of glyphosate synthesis), herbicide glyphosate and aminomethylphosphonic acid (main metabolite of glyphosate). These compounds are complexing agents for Cu electrodes. Through simple experiments (cyclic voltammetry and corrosion studies) the applicability of the copper electrode as electrochemical sensor for complexing compounds in flow systems was presented.
Resumo:
This work describes the creation of an very simple calculation algorithm, based in basic chemical and mathematic principles, for the calculation of weak diprotic acid dissociation constants as, for example, amino acids, from potentiometric titrations. For an easier understanding of the algorithm the logical reasoning of this calculus is schematized in a diagram of blocks. In the second part of the work the algorithm is applied to an Excel calculation sheet to determine the dissociation constants of Nicotinic Acid and Glycine, from the respective potentiometric titration curves. The values obtained using this algorithm are compared with those estimated by Hyperquad2008 (program generally used for this type of calculus) and also with the values of a stability constants database.
Resumo:
In this work, nanostructured samples of barium zirconate (BaZrO3) and calcium zirconate (CaZrO3) were synthesized by the gel-combustion method, using glycine as fuel. The ceramic powders were calcined at 550 °C for 2 h and subsequently heat treated at 1350 °C for 10 min (fast-firing). The X-ray diffraction technique was employed to identify and characterize the crystalline phases present in the synthesized powders, using the Rietveld method. Monophasic nanostructured samples of BaZrO3 and CaZrO3 presenting average crystallite sizes of around 8.5 and 10.3 nm, respectively, were found after fast-firing.
Resumo:
Densities of glycine in aqueous solutions of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate were determined at temperatures ranging from 283.15 to 313.15 K. The apparent molar volume, infinite dilution apparent molar volume, second derivative of the infinite dilution partial molar volume with respect to temperature, partial molar volume of transfer at infinite dilution, and the number of hydration were determined. It was found that the apparent molar volume at infinite dilution was positive, but decreased with increasing ionic liquid concentration and increased with increasing temperature. On the other hand, the partial molar volume of transfer at infinite dilution behaved in a similar manner, but was negative.
Resumo:
In this manuscript, a BiVO4 semiconductor was synthesized by solution combustion synthesis using different fuels (Alanine, Glycine and Urea). Also, the Tween® 80 surfactant was added during synthesis. BiVO4 was characterized by XRD, SEM and diffuse reflectance spectroscopy. Photocatalytic activity was evaluated by the discoloration of methylene blue at 664 nm under UV-visible light irradiation. According to XRD, the monoclinic phase of BiVO4 was obtained for the samples. The smallest particle size and highest k obs value were observed for the BiVO4/alanine sample, which promoted greater demethylation of methylene blue.