895 resultados para Gases--Thermal properties.
Resumo:
Two porous mixed valent diruthenium(II,III)-dicarboxylate compounds have been prepared and characterized by spectroscopic methods, X-ray diffraction and thermogravimetry. Crystalline solids of [Ru(2)(tere)(2)Cl] center dot 3.5H(2)O (tere=terephthalate) and [Ru(2)(adip)(2)Cl] center dot 1.5H(2)O (adip=adipate) consist of extended chains in which polymeric layers of multiply metal-metal bonded [Ru(2)](5+) cores are bridged by dicarboxylate ligands in paddlewheel type geometries. Units of [Ru(2)(dicarboxylate)(2)](n)(+) are linked by axial bridging chloride ions generating three-dimensional networks. The polymers loose non-bonded water molecules at low temperatures but do not undergo thermal decomposition below 280-300 degrees C. Both of compounds exhibit high BET surface areas, [Ru(2)(tere)(2)Cl]: 235 m(2) g(-1) and [Ru(2)(adip)(2)Cl]: 281 m(2) g(-1), and occlude similar numbers of mol of N(2) per mol of metal. The terephthalate ligand generated an organized structure with supermicropores (total pore size of 0.24 cm(3) g(-1)) while the adipate ligand led to a mesoporous structure (total pore sizes of 0.47 cm(3) g(-1)) for the corresponding diruthenium(II,III)-dicarboxylate polymers. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fe-Pd alloy films have been prepared by electrochemical deposition from an alkaline electrolyte containing Fe sulfate, Pd chloride and 5-sulfosalicylic acid onto polycrystalline titanium substrates. The as-deposited films were nanocrystalline and magnetically soft (coercivity similar to 25 Oe). L1(0) Fe-Pd films with a (111) preferred orientation were obtained by post-deposition thermal annealing of films with composition about 37 at% Fe in an (Ar + 5% H-2) gas flow at 500 degrees C. Such films exhibit hard magnetic properties, with a coercivity up to 1880 Oe, and a slightly anisotropic magnetic response, with a larger in-plane remanence. Preliminary magnetic investigations support magnetization switching through pinning of domain walls. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Four samples of N,O-carboxymethylchitosan (0.5 < <(DS)over bar> < 1.5) were prepared by reacting chitosan (<(DA)over bar> = 24%) with monochloroacetic acid in the presence of excess sodium hydroxide. The carboxymethylchitosan samples were soluble in a wider range of pH as compared to the parent chitosan and the X-ray diffraction showed that they adopt a less ordered arrangement. The carboxymethylation of chitosan decreased the thermal stability of the polymer as evaluated by thermogravimetry but no clear dependence of the activation energy on the average degree of substitution of carboxymethylchitosan was identified. However, the values of activation energy of carboxymethylchitosan issued from the isothermal study depended on the degree of conversion, suggesting the occurrence of a complex set of simultaneous reactions. (C) 2008 Published by Elsevier Ltd.
Resumo:
The concern related to the environmental degradation and to the exhaustion of natural resources has induced the research on biodegradable materials obtained from renewable sources, which involves fundamental properties and general application. In this context, we have fabricated thin films of lignins, which were extracted from sugar cane bagasse via modified organosolv process using ethanol as organic solvent. The films were made using the vacuum thermal evaporation technique (PVD, physical vapor deposition) grown up to 120 nm. The main objective was to explore basic properties such as electrical and surface morphology and the sensing performance of these lignins as transducers. The PVD film growth was monitored via ultraviolet-visible (UV-vis) absorption spectroscopy and quartz crystal microbalance, revealing a linear relationship between absorbance and film thickness. The 120 nm lignin PVD film morphology presented small aggregates spread all over the film surface on the nanometer scale (atomic force microscopy, AFM) and homogeneous on the micrometer scale (optical microscopy). The PVD films were deposited onto Au interdigitated electrode (IDE) for both electrical characterization and sensing experiments. In the case of electrical characterization, current versus voltage (I vs V) dc measurements were carried out for the Au IDE coated with 120 nm lignin PVD film, leading to a conductivity of 3.6 x 10(-10) S/m. Using impedance spectroscopy, also for the Au IDE coated with the 120 nm lignin PVD film, dielectric constant of 8.0, tan delta of 3.9 x 10(-3)) and conductivity of 1.75 x 10(-9) S/m were calculated at 1 kHz. As a proof-of-principle, the application of these lignins as transducers in sensing devices was monitored by both impedance spectroscopy (capacitance vs frequency) and I versus time dc measurements toward aniline vapor (saturated atmosphere). The electrical responses showed that the sensing units are sensible to aniline vapor with the process being reversible. AFM images conducted directly onto the sensing units (Au IDE coated with 120 nm lignin PVD film) before and after the sensing experiments showed a decrease in the PVD film roughness from 5.8 to 3.2 nm after exposing to aniline.
Resumo:
The (bio)degradation of polyolefins can be accelerated by modifying the level of crystallinity or by incorporation of carbonyl groups by adding pro-oxidants to masterbatches or through exposure to ultraviolet irradiation. In this work we sought to improve the degradation of PP by adding cobalt, calcium or magnesium stearate to Ecoflex(R), PP or Ecoflex(R)/PP blends. The effect of the pro-oxidants on biodegradability was assessed by examining the mechanical properties and fluidity of the polymers. PP had higher values for tensile strength at break and Young`s modulus than Ecoflex(R), and the latter had little influence on the properties of PP in Ecoflex(R)/PP blends. However, the presence of pro-oxidants (except for calcium) reduced these properties. All of the pro-oxidants enhanced the fluidity of PP, a phenomenon that facilitated polymer degradation at high temperatures. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.
Resumo:
Recent developments in biological research, has shown that the initial maximum permissible exposure (MPE) limits for protection of workers from risks associated with artificial optical radiations were more stringent than needed. Using the most recent MPE limits for artificial optical radiation this piece of work was focused on the investigation of the level of visible light attenuation needed by automatic welding filters in case of switching failure. Results from the comparison of different exposure standards were employed in investigating the need of Vis/IR and blue light transmittance requirement for automatic welding filters. Real and arbitrary spectra were taken into consideration for the worst and best case scenarios of artificial optical radiations. An excel worksheet developed during the execution of this project took into consideration the exposure from different light sources and the precision of the spectrometer used in measuring the transmittances of a welding filter. The worksheet was developed and tested with known product properties to investigate the validity of its formulation. The conclusion drawn from this project was that attenuation in the light state will be needed for products with the darkest state shade 11 or higher. Also shown is that current welding filter protects the eye well enough even in the case of switching failure.
Resumo:
The aim of this master thesis is an investigation of the thermal performance of a thermal compound parabolic concentrating (CPC) collector from Solarus. The collector consists of two troughs with absorbers which are coated with different types of paint with unknown properties. The lower and upper trough of the collector have been tested individually. In order to accomplish the performance of the two collectors, a thorough literature study in the fields of CPC technology, various test methods, test standards for solar thermal collectors as well as the latest articles relating on the subject were carried out. In addition, the set‐up of the thermal test rig was part of the thesis as well. The thermal performance was tested according to the steady state test method as described in the European standard 12975‐2. Furthermore, the thermal performance of a conventional flat plate collector was carried out for verification of the test method. The CPC‐Thermal collector from Solarus was tested in 2013 and the results showed four times higher values of the heat loss coefficient UL (8.4 W/m²K) than what has been reported for a commercial collector from Solarus. This value was assumed to be too large and it was assumed that the large value was a result of the test method used that time. Therefore, another aim was the comparison of the results achieved in this work with the results from the tests performed in 2013. The results of the thermal performance showed that the optical efficiency of the lower trough of the CPC‐T collector is 77±5% and the corresponding heat loss coefficient UL 4.84±0.20 W/m²K. The upper trough achieved an optical efficiency of 75±6 % and a heat loss coefficient UL of 6.45±0.27 W/m²K. The results of the heat loss coefficients are valid for temperature intervals between 20°C and 80°C. The different absorber paintings have a significant impact on the results, the lower trough performs overall better. The results achieved in this thesis show lower heat loss coefficients UL and higher optical efficiencies compared to the results from 2013.
Resumo:
O processo de transformação da pele em couro envolve uma seqüência complexa de reações químicas e processos mecânicos, no qual o curtimento representa fundamental estágio, por propiciar à pele características como qualidade, estabilidade hidrotérmica e excelentes propriedades para uso. O sulfato básico de cromo trivalente é o agente curtente predominantemente empregado no curtimento de peles em todo o mundo. É produzido a partir do cromato de sódio, industrialmente obtido do minério de cromo. Consideráveis quantidades de resíduos sólidos contendo cromo são geradas pelas indústrias coureira e calçadista. Estes resíduos tem sido motivo de preocupação constante, uma vez que são considerados perigosos devido a presença do cromo. O processo de incineração destes resíduos é uma importante alternativa a ser considerada, em decorrência de suas características de redução de massa, volume e possibilidade de aproveitamento da energia térmica dos gases de combustão. O processo de incineração dos resíduos das indústrias coureira e calçadista dá origem a cinzas contendo cerca de 40% de cromo que pode ser submetida a um processo de recuperação. Este trabalho apresenta os resultados da pesquisa sobre a utilização das cinzas, provenientes da incineração dos resíduos sólidos da indústria coureira e da indústria calçadista, para a produção de cromato de sódio(VI). No processo de planejamento e de condução dos experimentos foram utilizadas as técnicas de Planejamento Fatorial 2k, Metodologia de Superfície de Resposta e Análise de Variância na avaliação da produção de cromato de sódio(VI). Os fatores investigados foram: temperatura, taxa de aquecimento, tempo de reação, vazão de ar e quantidade de dolomita. A partir das variáveis selecionadas identificaram-se como parâmetros importantes a temperatura e a taxa de aquecimento. As superfícies de resposta tridimensionais obtidas a partir dos modelos de segunda ordem ajustados aos dados experimentais, apresentaram o comportamento do efeito conjugado dos fatores temperatura e taxa de aquecimento sobre a variável resposta grau de oxidação, desde a temperatura de inicio da reação química até a temperatura limite utilizada industrialmente. As condições de operação do processo de produção de cromato de sódio(VI) foram otimizadas. Os níveis ótimos dos fatores de controle aplicados as cinzas dos resíduos da indústria calçadista, geradas em uma planta piloto com incinerador de leito fixo, com tecnologia de gaseificação e combustão combinadas, apresentaram um grau de oxidação superior a 96% para as cinzas coletadas no ciclone e de 99,5% para as cinzas coletas no reator de gaseificação. Os resíduos sólidos, as cinzas e o produto de reação foram caracterizados por análises químicas, fluorescência de raio-X, microscopia eletrônica de varredura e difração de raio-X.
Resumo:
Esta dissertação de mestrado considera a transferência de calor combinando convecção e radiação térmica no escoamento de gases participantes em dutos de seção circular. Partindo de uma metodologia geral, o trabalho enfoca principalmente os casos típicos de aplicação em geradores de vapor fumotubulares de pequeno e médio porte, em que gases em alta temperatura escoam através de um tubo mantido em temperatura uniforme. O escoamento é turbulento e o perfil de velocidade é plenamente desenvolvido desde a entrada do duto. A temperatura do gás, contudo, é uniforme na entrada, considerando-se a região de desenvolvimento térmico. Duas misturas de gases são tratadas, ambas constituídas por dióxido de carbono, vapor d’água e nitrogênio, correspondendo a produtos típicos da combustão estequiométrica de óleo combustível e metano. As propriedades físicas dos gases são admitidas uniformes em todo o duto e calculadas na temperatura de mistura média, enquanto que as propriedades radiantes são modeladas pela soma-ponderada-de-gases-cinzas. O campo de temperatura do gás é obtido a partir da solução da equação bidimensional da conservação da energia, sendo os termos advectivos discretizados através do método de volumes de controle com a função de interpolação Flux-Spline; as trocas de energia radiantes são avaliadas por meio do método das zonas, onde cada zona de radiação corresponde a um volume de controle. Em um primeiro passo, a metodologia é verificada pela comparação com resultados apresentados na literatura para a transferência de calor envolvendo apenas convecção e combinando convecção com radiação. Em seguida, discutem-se alguns efeitos da inclusão da radiação térmica, por exemplo, no número de Nusselt convectivo e na temperatura de mistura do gás. Finalmente, são propostas correlações para o número de Nusselt total, que leva em conta tanto a radiação quanto a convecção. Essa etapa exige inicialmente uma análise dos grupos adimensionais que governam o processo radiante para redução do número elevado de parâmetros independentes. As correlações, aplicáveis a situações encontradas em geradores de vapor fumotubulares de pequeno e médio porte, são validadas estatisticamente pela comparação com os resultados obtidos pela solução numérica.
Resumo:
In this work, AISI 1010 steel samples were plasma nitrided into 20% N 2 100 Pa and 400 Pa for N 2 and H 2 , respectively), temperatures of 500 and 580 °C, during 2 h. Three different procedures for cooling were accomplished after nitriding. In the first procedure the cooling occurred naturally, that is, the sample was kept on substrate holder. In the second one the sample was pulled off and cooling in a cold surface. Finally, in the third cooling process the sample was pulled off the substrate holder down into special reservoir filled with oil held at ambient temperature. The properties of the AISI 1010 steel samples were characterized by optical and electron microscopy, X-ray diffraction, Mössbauer spectroscopy and microhardness tests. Thermal gradient inside the sample kept on substrate holder during cooling process was measured by three inserted thermocouples at different depths. When samples were cooled rapidly the transformation of ϵ-Fe 2 − 3 N to γ′-Fe 4 N was inhibited. Such effect is indicated by the high concentration of ϵ-Fe compound zone. To get solid state solution of nitrogen in the diffusion zone, instead of precipitates of nitride phases, the cooling rate should be higher than a critical value of about 0.95 °C/s. When this value is reached at any depth of the diffusion zone, two distinct diffusion zones will appear. Temperature gradients were measured inside the samples as a consequence of the plasma treatment. It's suggested the need for standardization of the term “treatment temperature” for plasma treatment because different nitrided layer properties could be reported for the same “treatment temperature”.
Resumo:
Continuous Synthesis by Solution Combustion was employed in this work aiming to obtain tin dioxide nanostructured. Basically, a precursor solution is prepared and then be atomized and sprayed into the flame, where its combustion occurs, leading to the formation of particles. This is a recent technique that shows an enormous potential in oxides deposition, mainly by the low cost of equipment and precursors employed. The tin dioxide (SnO2) nanostructured has been widely used in various applications, especially as gas sensors and varistors. In the case of sensors based on semiconducting ceramics, where surface reactions are responsible for the detection of gases, the importance of surface area and particle size is even greater. The preference for a nanostructured material is based on its significant increase in surface area compared to conventional microcrystalline powders and small particle size, which may benefit certain properties such as high electrical conductivity, high thermal stability, mechanical and chemical. In this work, were employed as precursor solution tin chloride dehydrate diluted in anhydrous ethyl alcohol. Were utilized molar ratio chloride/solvent of 0,75 with the purpose of investigate its influence in the microstructure of produced powder. The solution precursor flux was 3 mL/min. Analysis with X-ray diffraction appointed that a solution precursor with molar ratio chloride/solvent of 0,75 leads to crystalline powder with single phase and all peaks are attributed to phase SnO2. Parameters as distance from the flame with atomizer distance from the capture system with the pilot, molar ratio and solution flux doesn t affect the presence of tin dioxide in the produced powder. In the characterization of the obtained powder techniques were used as thermogravimetric (TGA) and thermodiferential analysis (DTA), particle size by laser diffraction (GDL), crystallographic analysis by X-ray diffraction (XRD), morphology by scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and electrical conductivity analysis. The techniques used revealed that the SnO2 exhibits behavior of a semiconductor material, and a potentially promising material for application as varistor and sensor systems for gas
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presence of pores in ceramics is directly related to the chosen forming process. So, in the starch consolidation method, the ceramics show, after burning, pores with morphology similar to that presented by this organic material. on the other hand, the increase in solid load leads up to alterations in dispersion viscosity, increasing the thermal stresses during drying and sintering processes. In order to verify the solid percentage influence in ceramic final properties, samples were prepared with silicon carbide in different compositions using or not starch as binder agent and pore forming element. The characterization of the ceramic pieces was performed by superficial roughness measurements, porosity besides by optical and scanning electron microscopy. The results showed ceramics with SiC and starch presented physical and microscopic properties slightly higher in relation to those with only ceramic powder in their composition. The presence of organic material, agglomerated and foam during the forming were essential for the final properties of the studied samples.