914 resultados para GLASSY CARBON ELECTRODE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach was developed for nitrate analysis in a FIA configuration with amperometric detection (E=-0.48 V). Sensitive and reproducible current measurements were achieved by using a copper electrode activated with a controlled potential protocol. The response of the FIA amperometric method was linear over the range from 0.1 to 2.5 mmol L(-1) nitrate with a detection limit of 4.2 mu mol L(-1) (S/N = 3). The repeatability of measurements was determined as 4.7% (n=9) at the best conditions (flow rate: 3.0 mL min(-1), sample volume: 150 mu L and nitrate concentration: 0.5 mmol L(-1)) with a sampling rate of 60 samples h(-1). The method was employed for the determination of nitrate in mineral water and soft drink samples and the results were in agreement with those obtained by using a recommended procedure. Studies towards a selective monitoring of nitrite were also performed in samples containing nitrate by carrying out measurements at a less negative potential (-0.20 V). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A carbon micro/nanostructured composite based on cup-stacked carbon nanotubes (CSCNTs) grown onto a carbon felt has been found to be an efficient matrix for enzyme immobilization and chemical signal transduction. The obtained CSCNT/felt was modified with a copper hexacyanoferrate/polypyrrole (CuHCNFe/Ppy) hybrid mediator, and the resulting composite electrode was applied to H(2)O(2) detection, achieving a sensitivity of 194 +/- 15 mu A mmol(-1) L. The results showed that the CSCNT/felt matrix significantly increased the sensitivity of CuHCNFe/Ppy-based sensors compared to those prepared on a felt unrecovered by CSCNTs. Our data revealed that the improved sensitivity of the as-prepared CuHCNFe/Ppy-CSCNT/felt composite electrode can be attributed to the electronic interactions taking place among the CuHCNFe nanocrystals, Ppy layer and CSCNTs. In addition, the presence of CSCNTs also seemed to favor the dispersion of CuHCNFe nanocrystals over the Ppy matrix, even though the CSCNTs were buried under the conducting polymer layer. The CSCNT/felt matrix also enabled the preparation of a glucose biosensor whose sensitivity could be tuned as a function of the number of glucose oxidase (GOx) layers deposited through a Layer-by-Layer technique with an sensitivity of 11 +/- 2 mu A mmol(-1) L achieved at 15 poly(diallyldimethylammoniumchloride)/GOx bilayers. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper presents the study of the decolourisation of real textile effluent by constant current electrolysis in a flow-cell using a DSAO type material. The effect of using different anode materials (Ti/Ru0.3Ti0.7O2; Ti/Ir0.3Ti0.7O2; Ti/RuxSn1-xO2, where X = 0.1, 0.2 or 0.3) on the efficiency of colour removal is discussed. Attempts to perform galvanostatic oxidation (40 and 60 mA cm(-2)) on the as-received effluent demonstrate that colour removal and total organic carbon (TOC) removal are limited. In this case the greatest degree of colour removal is achieved when anode containing 90% SnO2 is used. If the conductivity of the effluent is increased by adding NaCl (0.1 mol L-1) appreciable colour/TOC removal is observed. The efficiencies of colour and TOC removal are discussed in terms of the energy per order (E-EO/kWhm(-3) order(-1)) and energy consumption (E-C/kW h kg(-1) TOC), respectively. Finally, the extent of colour removal is compared to consent levels presented in the literature. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents results of studies of carbon-dispersed Pt-Rh (1:1) nanoparticles as electrocatalysts for the ethanol electro-oxidation. The influences of the crystallite size and the cell temperature on the yields of CO2, acetaldehyde and acetic acid are investigated. Metal nanoparticles were prepared by two different routes: (1) impregnation on carbon powder followed by thermal reduction on hydrogen atmosphere and (2) chemical reduction of the precursor salts. The surface active area and the electrochemical activity of the electrocatalysts were estimated by CO stripping and cyclic voltammetry in the absence and in the presence of ethanol, respectively. Reaction intermediates and products were analyzed by in situ Fourier Transform Infra-Red Spectroscopy (FTIR) and Differential Electrochemical Mass Spectrometry (DEMS). The electrochemical stripping of CO and the electrochemical ethanol oxidation were slightly faster on the Pt-Rh electrocatalysts compared to Pt/C. Also, in situ FTIR spectra and DEMS measurements evidenced that the CO2/acetaldehyde and the CO2/acetic acid ratios are higher for the Pt-Rh/C materials in relation to Pt/C. This was ascribed to the activation of the C-C bond breaking by Rh, this being more prominent for the materials with smaller crystallite sizes. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A graphite-polyurethane composite electrode has been used for the determination of furosemide, a antihypertensive drug, in pharmaceutical samples by anodic oxidation. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrooxidation process at +1.0 V vs. SCE over a wide pH range, with the result that no adsorption of analyte or products occurs, unlike at other carbon-based electrode materials. Quantification was carried out using cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry. Linear ranges were determined (up to 21 mu mol L-1 with cyclic voltammetry) as well as limits of detection (0.15 mu mol L-1 by differential pulse voltammetry). Four different types of commercial samples were successfully analyzed. Recovery tests were performed which agreed with those obtained by spectrophotometric evaluation. The advantages of this electrode material for repetitive analyzes, due to the fact that no electrode surface renewal is needed owing to the lack of adsorption, are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A graphite silicone-rubber composite electrode (GSR) was used for the determination of propranolol in drug formulation. Cyclic voltammetry (CV) at the GSR presented an irreversible oxidation peak at + 0.8V vs. SCE, in Britton Robinson (B-R) buffer pH 7.4. The quantitative determination was carried out using differential pulse voltammetry (DPV). Under optimized parameters a linear dynamic range from 5.0 to 80.6 mu mol L(-1) with a detection limit of 1.1 mu mol L(-1) was observed. A repeatability of 4.5 +/- 0.1 mu A (n = 10) peak current was found after 10 successive DPV voltammograms of propranolol in the same solution after surface renovations. Using the proposed electrode, propranolol was quantified in a pharmaceutical formulation with results that agreed within 95% confidence level (t-test) with those from an official method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new composite electrode based on multiwall carbon nanotubes (MWCNT) and silicone-rubber (SR) was developed and applied to the determination of propranolol in pharmaceutical formulations. The effect of using MWCNT/graphite mixtures in different proportions was also investigated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for electrochemical characterization of different electrode compositions. Propranolol was determined using MWCNT/SR 70% (m/m) electrodes with linear dynamic ranges up to 7.0 mu molL(-1) by differential pulse and up to 5.4 mu molL(-1) by square wave voltammetry, with LODs of 0.12 and 0.078 mu molL(-1), respectively. Analysis of commercial samples agreed with that obtained by the official spectrophotometric method. The electrode is mechanically robust and presented reproducible results and a long useful life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study of two different conductive carbon-black pigments, Vulcan XC-72 R and Printex L6, for the electrogeneration of hydrogen peroxide (H(2)O(2)) by reducing dissolved oxygen in an alkaline solution was performed. The materials were physically characterized by X-ray diffraction (XRD), Fourier transform infrared attenuated total reflection (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). XRD shows the presence of SO(2) and ATR-FTIR technique indicates a difference in NO and SO(2) functional groups between the two carbon pigments. XPS indicated presence of SO and NO and more oxygenated acid species on Printex L6. A rotating ring-disk electrode was used for electrochemical analysis of the oxygen reduction reaction (ORR). The results showed that the Printex L6 was better than Vulcan XC-72 R for H(2)O(2) production. Results also indicate that the number of electrons transferred in the ORR for Printex L6 and Vulcan XC-72 R were 2.2 and 2.9, respectively, while the percentages of H(2)O(2) formed were 88% and 51%. Scanning electrochemistry microscopy images confirmed the higher amount of H(2)O(2) formed in the Printex L6 pigment. Printex L6 was shown to be a more promising for H(2)O(2) production than Vulcan XC-72 R, while the latter was shown to have more potential for fuel cells. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the key objectives in fuel-cell technology is to improve the performance of the anode catalyst for the alcohol oxidation and reduce Pt loading. Here, we show the use of six different electrocatalysts synthesized by the sol -gel method on carbon powder to promote the oxidation of methanol in acid media. The catalysts Pt-PbO(x) and Pt-(RuO(2)-PbO(x)) with 10% of catalyst load exhibited significantly enhanced catalytic activity toward the methanol oxidation reaction as compared to Pt-(RuO(2))/C and Pt/C electrodes. Cyclic voltammetry studies showed that the electrocatalysts Pt-PbO(x)/C and Pt-(RuO(2)-PbO(x))/C started the oxidation process at extremely low potentials and that they represent a good novelty to oxidize methanol. Furthermore, quasi-stationary polarization experiments and cronoamperometry studies showed the good performance of the Pt-PbO(x), Pt-(RuO(2)-PbO(x))/C and Pt-(RuO(2)-IrO(2))/C catalysts during the oxidation process. Thus, the addition of metallic Pt and PbO(x) onto high-area carbon powder, by the sol -gel route, constitutes an interesting way to prepare anodes with high catalytic activity for further applications in direct methanol fuel cell systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The L-dopa is the immediate precursor of the neurotransmitter dopamine. Unlike dopamine, L-dopa easily enters the central nervous system and is used in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-dopa in pharmaceutical formulations using a carbon paste electrode modified with trinuclear ruthenium ammine complex [(NH3)(5)Ru-III-O-Ru-IV(NH3)(4)-O-Ru-III(NH3)(5)](6+) (Ru-red) incorporated in NaY zeolite. The parameters which influence on the electrode response (paste composition, potential scan rate, pH and interference) were also investigated. The optimum conditions were found to an electrode composition (m/m) of 25% zeolite containing 6.7% Ru, 50% graphite and 25% mineral oil in acetate buffer at pH 4.8. Voltammetric peak currents showed a linear response for L-dopa concentration in the range between 1.2 x 10(-4) and 1.0 x 10(-2) Mol l(-1) (r = 0.9988) with a detection limit of 8.5 x 10(-5) mol l(-1). The variation coefficient for a 1.0 x 10(-3) mol l(-1) L-dopa (n = 10) was 5.5%. The results obtained for L-dopa in pharmaceutical formulations (tablet) was in agreement with compared official method. In conclusion, this study has illustrated that the proposed electrode modified with Ru-red incorporated zeolite is suitable valuable for selective measurements of L-dopa. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the work described by this paper, we studied the development of a selective potassium ion sensor constituted of a carbon paste electrode modified (CPEM) with a novel KSr(2)Nb(2)O(15). The material KSr(2)Nb(2)O(15) is an oxide with the tetragonal tungsten bronze structure (TTB) type are in forefront both in the area of research as well as in industrial applications. The sensor response to potassium ions was linear in the concentration range 1.26 x 10(-5) at 1.62 x 10(-3) mol L(-1) (E (mV) = 32.7 + 51.1 log [K(+)]). The sensor based KSr(2)Nb(2)O(15), of the TTB-type presented very good potentiometric response, with a slope of 51.1 mV/dec (at 25 degrees C) and detection limit for the potassium ions of 7.27 x 10(-5) mol.L(-1)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a simple route to prepare carbon supported Pt/C, Pt:Ru/C, Pt:Mo/C and Pt:Ru:Mo/C catalysts is reported. The electrochemical properties of the several carbon materials used as substrates in the absence and in the presence of supported platinum and platinum alloys catalysts were investigated using cyclic voltammetry and employing the thin porous coating electrode technique. The activity of the dispersed catalysts composed of Pt/C with respect to the oxygen reduction and of alloy/C with respect to methanol oxidation was investigated using steady state polarization measurements. The performance with respect to the oxygen reduction reaction of the Pt/C catalyst prepared on heat-treated Vulcan carbon substrate is equivalent to that reported in the literature for the state-of-the-art electrocatysts. Pt:Ru:Mo/C samples prepared in this work presented the higher catalytic effect for methanol electro-oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fiber ultramicroelectrodes are shown to be suitable for adsorptive stripping potentiometric measurements of trace DNA and RNA. The origin of the carbon fiber has a profound effect upon its suitability for trace analysis of nucleic acids, with the 'Aesar' materials performing most favorably. The resulting ultramicroelectrodes offer effective adsorptive accumulation of DNA and RNA from unstirred microliter-volume solutions, and are shown to be useful in adsorptive stripping transfer experiments. The influence of the surface pretreatment and accumulation conditions is described, along with the analytical-performance characteristics. The detection limits are 6, 15 and 40 mu g/l tRNA, ssDNA and dsDNA, respectively (5 min accumulation). (C) 1998 Elsevier B.V. S.A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoelectrochemical degradation of p-nitrophenol (PNP) was investigated using titanium dioxide thin-film photoelectrode. The effects of different supporting electrolytes, pH, applied potential and PNP concentration were examined and discussed. Complete photodegradation was obtained in perchlorate medium at pH 2 when the photoanode was biased at +1.0 V (versus SCE) during a 3-h experiment. Under these conditions, carbon removal of approximately 60% was achieved. (C) 2005 Elsevier B.V. All rights reserved.