942 resultados para Fungal mastitis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The control of mastitis is currently reliant on antibiotic utilization. Nevertheless antibiotics overuse and use without criteria leads to the development of resistant strains with negative consequences both in animal and public health. Essential oils (EOs) are classified as GRAS (generally recognized as safe), are provided with antimicrobial properties and no resistance has been reported after use. The aim of this study was to evaluate the antimicrobial activity of EOs of aromatic herbs, growing wild in Alentejo region and widely used in Mediterranean food, against microorganisms isolated from ovine mastitic milk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic code establishes the rules that govern gene translation into proteins. It was established more than 3.5 billion years ago and it is one of the most conserved features of life. Despite this, several alterations to the standard genetic code have been discovered in both prokaryotes and eukaryotes, namely in the fungal CTG clade where a unique seryl transfer RNA (tRNACAG Ser) decodes leucine CUG codons as serine. This tRNACAG Ser appeared 272±25 million years ago through insertion of an adenosine in the middle position of the anticodon of a tRNACGA Ser gene, which changed its anticodon from 5´-CGA-3´ to 5´-CAG-3´. This most dramatic genetic event restructured the proteome of the CTG clade species, but it is not yet clear how and why such deleterious genetic event was selected and became fixed in those fungal genomes. In this study we have attempted to shed new light on the evolution of this fungal genetic code alteration by reconstructing its evolutionary pathway in vivo in the yeast Saccharomyces cerevisiae. For this, we have expressed wild type and mutant versions of the C. albicans tRNACGA Ser gene into S. cerevisiae and evaluated the impact of the mutant tRNACGA Ser on fitness, tRNA stability, translation efficiency and aminoacylation kinetics. Our data demonstrate that these mutants are expressed and misincorporate Ser at CUGs, but their expression is repressed through an unknown molecular mechanism. We further demonstrate, using in vivo forced evolution methodologies, that the tRNACAG Ser can be easily inactivated through natural mutations that prevent its recognition by the seryl-tRNA synthetase. The overall data show that repression of expression of the mistranslating tRNACAG Ser played a critical role on the evolution of CUG reassignment from Leu to Ser. In order to better understand the evolution of natural genetic code alterations, we have also engineered partial reassignment of various codons in yeast. The data confirmed that genetic code ambiguity affects fitness, induces protein aggregation, interferes with the cell cycle and results in nuclear and morphologic alterations, genome instability and gene expression deregulation. Interestingly, it also generates phenotypic variability and phenotypes that confer growth advantages in certain environmental conditions. This study provides strong evidence for direct and critical roles of the environment on the evolution of genetic code alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tese descreve diversas estratégias de preparação assim como a caracterização de nanocompósitos com base em distintos biopolímeros. Em particular foi estudada a incorporação de nanopartículas (NPs) metálicas, nomeadamente de Ag, Cu e Au. Estes nanomateriais apresentam um potencial prático enorme em diversas áreas, no entanto foi investigada especificamente a sua aplicação como materiais antimicrobianos. No primeiro capítulo apresenta-se uma revisão bibliográfica, onde são realçados os principais tópicos discutidos ao longo da tese. Inicialmente apresenta-se uma contextualização deste trabalho sendo seguidamente apresentadas algumas considerações sobre nanocompósitos e o seu impacto tecnológico atual. Em seguida, descrevem-se as vantagens do uso de NPs como cargas nos materiais compósitos especificamente no caso de bionanocompósitos. Foi focado o uso da celulose como matriz uma vez que foi o composto “base” usado neste trabalho. Fez-se a descrição exaustiva das metodologias existentes na literatura para a preparação dos nanocompósitos celulósicos com diferentes NPs metálicas assim como das respetivas aplicações. Dentro das aplicações, foi dado especial destaque às propriedades antimicrobianas dos materiais preparados seja a nível da sua atividade antibacteriana ou antifúngica. Esta introdução privilegia o trabalho relacionado diretamente com os sistemas descritos nos capítulos subsequentes. No segundo capítulo apresentam-se os resultados obtidos para nanocompósitos de prata em matriz celulósica. Através do uso de metodologias, tais como a síntese in situ e a pós-deposição, foram preparados diversos materiais usando dois substratos celulósicos distintos nomeadamente a celulose vegetal e bacteriana. Estes nanocompósitos foram caracterizados em termos da sua morfologia e composição química, verificando-se a importância destas características na sua atividade antibacteriana. Foi verificado que nanocompósitos com teores de Ag de 5 x 10-4 (% m/m) são suficientes para obter atividade antibacteriana. A libertação de Ag(I) foi estudada em alguns destes materiais de modo a tentar perceber o mecanismo subjacente a este tipo de nanocompósitos. No terceiro capítulo é apresentado o estudo de NPs coloidais de Ag e Au como cargas para a preparação de nanocompósitos à base de quitosano nãomodificado e modificado quimicamente (derivado solúvel em água e derivado anfifílico). Foram preparados filmes finos de espessura de 9-14 μm, caracterizando-se as suas propriedades óticas e antibacterianas. As propriedades óticas foram ajustadas, quer pela variação do teor de NPs de Ag (0,3-3,9% m/m) ou pela utilização de amostras de NPs com distribuição de tamanho de partícula distinta. Foi investigada a atividade antibacteriana tanto para bactérias Gram-negativas (Klebsiella pneumoniae e Escherichia coli) como para Gram-positivas (Staphylococcus aureus). Para nanocompósitos preparados com o quitosano não modificado verificou-se uma dependência em função do teor de Ag. No caso do uso de derivados modificados, os materiais preparados mostraram uma eficiência superior, mesmo sem NPs de Ag. No quarto capítulo é apresentada a síntese e caracterização de nanocompósitos de pululano e NPs de Ag. Neste estudo é avaliada a atividade antifúngica dos filmes compósitos preparados contra o Aspergillus niger usando protocolos padrão. Estes materiais foram preparados na forma de filmes (66-74 μm de espessura) por evaporação de solvente da mistura de pululano e coloides de Ag. Foi observado o aumento da inibição do fungo na presença dos nanocompósitos, tendo sido pela primeira vez mostrado o efeito disruptivo destes materiais sobre os esporos do A. niger através da análise das imagens de SEM. Este efeito ocorre na presença dos filmes devido à presença das cargas de NPs de Ag dispersas no pululano. O desenvolvimento de materiais de papel com NPs de Cu é um desafio devido à propensão destas espécies em oxidar sob condições ambiente. No quinto capítulo é descrita pela primeira vez o estudo comparativo do crescimento e estabilidade de NPs de Cu em celulose vegetal e bacteriana. Para além disso foi avaliado o uso de nanoestruturas com diferentes dimensionalidades como cargas, nomeadamente nanoesferas e nanofios. Foi observado que o uso de nanofios aumenta a resistência à oxidação destes nanocompósitos para tempos de exposição ao ar mais prolongados. As matrizes celulósicas apresentam comportamento distinto no crescimento e/ou adsorção das NPs de Cu. A celulose bacteriana foi o substrato mais eficiente para retardar a oxidação das NPs. A atividade antibacteriana destes nanocompósitos foi avaliada. Ao longo desta dissertação são apresentados métodos distintos para a obtenção de nanocompósitos com base em biopolímeros e NPs metálicas. Estes estudos permitiram não só a preparação de novos nanocompósitos mas também compreender e otimizar os mecanismos subjacentes à sua preparação. Ao mesmo tempo, este trabalho contribuiu para a transferência de tecnologia e conhecimento entre a área da Nanotecnologia e a área dos materiais derivados de fontes renováveis. As propriedades apresentadas por estes nanomateriais mostraram a sua possível aplicação como novos materiais antimicrobianos, no entanto é possível antecipar futuras aplicações em outras áreas tecnológicas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diplodia corticola is regarded as the most virulent fungus involved in cork oak decline, being able to infect not only Quercus species (mainly Q. suber and Q. ilex), but also grapevines (Vitis vinifera) and eucalypts (Eucalyptus sp.). This endophytic fungus is also a pathogen whose virulence usually manifests with the onset of plant stress. Considering that the infection normally culminates in host death, there is a growing ecologic and socio-economic concern about D. corticola propagation. The molecular mechanisms of infection are hitherto largely unknown. Accordingly, the aim of this study was to unveil potential virulence effectors implicated in D. corticola infection. This knowledge is fundamental to outline the molecular framework that permits the fungal invasion and proliferation in plant hosts, causing disease. Since the effectors deployed are mostly proteins, we adopted a proteomic approach. We performed in planta pathogenicity tests to select two D. corticola strains with distinct virulence degrees for our studies. Like other filamentous fungi D. corticola secretes protein at low concentrations in vitro in the presence of high levels of polysaccharides, two characteristics that hamper the fungal secretome analysis. Therefore, we first compared several methods of extracellular protein extraction to assess their performance and compatibility with 1D and 2D electrophoretic separation. TCA-Acetone and TCA-phenol protein precipitation were the most efficient methods and the former was adopted for further studies. The proteins were extracted and separated by 2D-PAGE, proteins were digested with trypsin and the resulting peptides were further analysed by MS/MS. Their identification was performed by de novo sequencing and/or MASCOT search. We were able to identify 80 extracellular and 162 intracellular proteins, a milestone for the Botryosphaeriaceae family that contains only one member with the proteome characterized. We also performed an extensive comparative 2D gel analysis to highlight the differentially expressed proteins during the host mimicry. Moreover, we compared the protein profiles of the two strains with different degrees of virulence. In short, we characterized for the first time the secretome and proteome of D. corticola. The obtained results contribute to the elucidation of some aspects of the biology of the fungus. The avirulent strain contains an assortment of proteins that facilitate the adaptation to diverse substrates and the identified proteins suggest that the fungus degrades the host tissues through Fenton reactions. On the other hand, the virulent strain seems to have adapted its secretome to the host characteristics. Furthermore, the results indicate that this strain metabolizes aminobutyric acid, a molecule that might be the triggering factor of the transition from a latent to a pathogenic state. Lastly, the secretome includes potential pathogenicity effectors, such as deuterolysin (peptidase M35) and cerato-platanin, proteins that might play an active role in the phytopathogenic lifestyle of the fungus. Overall, our results suggest that D. corticola has a hemibiotrophic lifestyle, switching from a biotrophic to a necrotrophic interaction after plant physiologic disturbances.This understanding is essential for further development of effective plant protection measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Candida albicans is the major fungal pathogen in humans, causing diseases ranging from mild skin infections to severe systemic infections in immunocompromised individuals. The pathogenic nature of this organism is mostly due to its capacity to proliferate in numerous body sites and to its ability to adapt to drastic changes in the environment. Candida albicans exhibit a unique translational system, decoding the leucine-CUG codon ambiguously as leucine (3% of codons) and serine (97%) using a hybrid serine tRNA (tRNACAGSer). This tRNACAGSer is aminoacylated by two aminoacyl tRNA synthetases (aaRSs): leucyl-tRNA synthetase (LeuRS) and seryl-tRNA synthetase (SerRS). Previous studies showed that exposure of C. albicans to macrophages, oxidative, pH stress and antifungals increases Leu misincorporation levels from 3% to 15%, suggesting that C. albicans has the ability to regulate mistranslation levels in response to host defenses, antifungals and environmental stresses. Therefore, the hypothesis tested in this work is that Leu and Ser misincorporation at CUG codons is dependent upon competition between the LeuRS and SerRS for the tRNACAGSer. To test this hypothesis, levels of the SerRS and LeuRS were indirectly quantified under different physiological conditions, using a fluorescent reporter system that measures the activity of the respective promoters. Results suggest that an increase in Leu misincorporation at CUG codons is associated with an increase in LeuRS expression, with levels of SerRS being maintained. In the second part of the work, the objective was to identify putative regulators of SerRS and LeuRS expression. To accomplish this goal, C. albicans strains from a transcription factor knock-out collection were transformed with the fluorescent reporter system and expression of both aaRSs was quantified. Alterations in the LeuRS/SerRS expression of mutant strains compared to wild type strain allowed the identification of 5 transcription factors as possible regulators of expression of LeuRS and SerRS: ASH1, HAP2, HAP3, RTG3 and STB5. Globally, this work provides the first step to elucidate the molecular mechanism of regulation of mistranslation in C. albicans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Biotecnologia), Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study represents the first international intercomparison of fungal spore observations since 1990, focusing on atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores. The campaigns were performed at sites located in Cork (Ireland) and Worcester (England) during summer 2010. Observations were made using Hirst-type volumetric spore traps and corresponding optical identification at the genus level by microscope. The measurements at both sites (including meteorological parameters) were compared and contrasted. The relationships between the fungal spore concentrations with selected meteorological parameters were investigated using statistical methods and multivariate regression trees (MRT). The results showed high correlations between the two sites with respect to daily variations. Statistically significant higher spore concentrations for Alternaria, Cladosporium and Ganoderma were monitored at the Worcester site. This result was most likely due to the differences in precipitation and local fungal spore sources at the two sites. Alternaria and Cladosporium reached their maxima a month earlier in Cork than in Worcester, and Didymella with Ganoderma peaked simultaneously with similar diurnal trends found for all the investigated spore types. MRT analysis helped to determine threshold values of the meteorological parameters that exerted most influence on the presence of spores: they were found to vary at the two sites. Our results suggest that the aeromycological profile is quite uniform over the British Isles, but a description of bioaerosols with respect to overall load and daily concentration can be quite diverse although the geographical difference between sites is relatively small. These variations in the concentrations therefore need to be explored at the national level

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are many species among the Alternaria genus, which hosts on economically important crops causing significant yield losses. Less attention has been paid to fungi hosting on plants constituting substantial components of pastures and meadows. Alternaria spp. spores are also recognised as important allergens. A 7-day volumetric spore trap was used to monitor the concentration of airborne fungal spores. Air samples were collected in Worcester, England (2006–2010). Days with a high spore count were then selected. The longest episode that occurred within a five year study was chosen for modelling. Two source maps presenting distribution of crops under rotation and pastures in the UK were produced. Back trajectories were calculated using the HYSPLIT model. In ArcGIS clusters of trajectories were studied in connection with source maps by including the height above ground level and the speed of the air masses. During the episode no evidence for a long distance transport from the continent of Alternaria spp. spores was detected. The overall direction of the air masses fell within the range from South-West to North. The back trajectories indicated that the most important sources of Alternaria spp. spores were located in the West Midlands of England.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An aerobiological survey was conducted through five consecutive years (2006–2010) at Worcester (England).The concentration of 20 allergenic fungal spore types was measured using a 7-day volumetric spore trap. The relationship between investigated fungal spore genera and selected meteorological parameters (maximum, minimum, mean and dew point temperatures, rainfall, relative humidity, air pressure,wind direction) was examined using an ordination method(redundancy analysis) to determine which environmental factors favoured their most abundance in the air and whether it would be possible to detect similarities between different genera in their distribution pattern. Redundancy analysis provided additional information about the biology of the studied fungi through the results of the Spearman’s rank correlation. Application of the variance inflation factor in canonical correspondence analysis indicated which explanatory variables were auto-correlated and needed to be excluded from further analyses. Obtained information will be consequently implemented in the selection of factors that will be a foundation for forecasting models for allergenic fungal spores in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006–2010.These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximumtemperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0–49 s m−3), moderate(50–99 s m−3), high (100–149 s m−3) and very high (150

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecological studies that examine species-environment relationships are often limited to several meteorological parameters, i.e. mean air temperature, relative humidity, precipitation, vapour pressure deficit and solar radiation. The impact of local wind, its speed and direction are less commonly investigated in aerobiological surveys mainly due to difficulties related to the employment of specific analytical tools and interpretation of their outputs. Identification of inoculum sources of economically important plant pathogens, as well as highly allergenic bioaerosols like Cladosporium species, has not been yet explored with remote sensing data and atmospheric models such as Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT). We, therefore, performed an analysis of 24 h intra-diurnal cycle of Cladosporium spp. spores from an urban site in connection with both the local wind direction and overall air mass direction computed by HYSPLIT. The observational method was a volumetric air sampler of the Hirst design with 1 h time resolution and corresponding optical detection of fungal spores with light microscopy. The atmospheric modelling was done using the on-line data set from GDAS with 1° resolution and circular statistical methods. Our results showed stronger, statistically significant correlation (p ≤ 0.05) between high Cladosporium spp. spore concentration and air mass direction compared to the local wind direction. This suggested that a large fraction of the investigated fungal spores had a regional origin and must be located more than a few kilometers away from the sampling point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© The Royal Society of Chemistry 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed an in-house pipeline for the processing and analyses of sequence data generated during Illumina technology-based metagenomic studies of the human gut microbiota. Each component of the pipeline has been selected following comparative analysis of available tools; however, the modular nature of software facilitates replacement of any individual component with an alternative should a better tool become available in due course. The pipeline consists of quality analysis and trimming followed by taxonomic filtering of sequence data allowing reads associated with samples to be binned according to whether they represent human, prokaryotic (bacterial/archaeal), viral, parasite, fungal or plant DNA. Viral, parasite, fungal and plant DNA can be assigned to species level on a presence/absence basis, allowing – for example – identification of dietary intake of plant-based foodstuffs and their derivatives. Prokaryotic DNA is subject to taxonomic and functional analyses, with assignment to taxonomic hierarchies (kingdom, class, order, family, genus, species, strain/subspecies) and abundance determination. After de novo assembly of sequence reads, genes within samples are predicted and used to build a non-redundant catalogue of genes. From this catalogue, per-sample gene abundance can be determined after normalization of data based on gene length. Functional annotation of genes is achieved through mapping of gene clusters against KEGG proteins, and InterProScan. The pipeline is undergoing validation using the human faecal metagenomic data of Qin et al. (2014, Nature 513, 59–64). Outputs from the pipeline allow development of tools for the integration of metagenomic and metabolomic data, moving metagenomic studies beyond determination of gene richness and representation towards microbial-metabolite mapping. There is scope to improve the outputs from viral, parasite, fungal and plant DNA analyses, depending on the depth of sequencing associated with samples. The pipeline can easily be adapted for the analyses of environmental and non-human animal samples, and for use with data generated via non-Illumina sequencing platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Certain environmental conditions in animal and plant production have been associated with increased frequency in respiratory illnesses, including asthma, chronic bronchitis, and hypersensitivity pneumonitis, in farmers occupationally exposed in swine production. The aim of this study was to characterize particulate matter (PM) contamination in seven Portuguese swine farms and determine the existence of clinical symptoms associated with asthma and other allergy diseases, utilizing the European Community Respiratory Health Survey questionnaire. Environmental assessments were performed with portable direct-reading equipment, and PM contamination including five different sizes (PM0.5, PM1.0, PM2.5, PM5.0, PM10) was determined. The distribution of particle size showed the same trend in all swine farms, with high concentrations of particles with PM5 and PM10. Results from the questionnaire indicated a trend such that subjects with diagnosis of asthma were exposed to higher concentrations of PM with larger size (PM2.5, PM5, and PM10) while subjects with sneezing, runny nose, or stuffy nose without a cold or flu were exposed to higher concentrations of PM with smaller size (PM0.5 and PM1). Data indicate that inhalation of PM in swine farm workers is associated with increased frequency of respiratory illnesses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)