949 resultados para Functional materials
Resumo:
We report on the application of cold atmospheric-pressure plasmas to modify silica nanoparticles to enhance their compatibility with polymer matrices. Thermally nonequilibrium atmospheric-pressure plasma is generated by a high-voltage radio frequency power source operated in the capacitively coupled mode with helium as the working gas. Compared to the pure polymer and the polymer nanocomposites with untreated SiO2, the plasma-treated SiO2–polymer nanocomposites show higher dielectric breakdown strength and extended endurance under a constant electrical stress. These improvements are attributed to the stronger interactions between the SiO2 nanoparticles and the surrounding polymer matrix after the plasma treatment. Our method is generic and can be used in the production of high-performance organic–inorganic functional nanocomposites.
Resumo:
An effective technique to improve the precision and throughput of energetic ion condensation through dielectric nanoporous templates and reduce nanopore clogging by using finely tuned pulsed bias is proposed. Multiscale numerical simulations of ion deposition show the possibility of controlling the dynamic charge balance on the upper template's surface to minimize ion deposition on nanopore sidewalls and to deposit ions selectively on the substrate surface in contact with the pore opening. In this way, the shapes of nanodots in template-assisted nanoarray fabrication can be effectively controlled. The results are applicable to various processes involving porous dielectric nanomaterials and dense nanoarrays.
Resumo:
To overcome major problems associated with insufficient incorporation of nitrogen in hydrogenated amorphous silicon nitride (a-SiNx:H) nanomaterials, which in turn impedes the development of controlled-bandgap nanodevices, here we demonstrate the possibility to achieve effective bandgap control in a broad range by using high-density inductively coupled plasmas. This achievement is related to the outstanding dissociation ability of such plasmas. It is shown that the compositional, structural, optical, and morphological properties of the synthesized a-SiNx:H nanomaterials can be effectively tailored through the manipulation of the flow rate ratio of the silane to nitrogen gases X. In particular, a wide bandgap of 5.21 eV can be uniquely achieved at a low flow rate ratio of the nitrogen to silane gas of 1.0, whereas typically used values often exceed 20.0. These results are highly-relevant to the development of the next-generation nanodevices that rely on the effective control of the functional nano-layer bandgap energies.
Resumo:
Objective Hallux valgus has been linked to functional disability and increased falls risk, but mechanisms underpinning functional disability are unclear. This study investigated functional performance, muscle strength and plantar pressures in adults with mild, moderate, and severe HV compared to controls, while considering the influence of foot pain. Methods Sixty adults with hallux valgus (classified as mild, moderate and severe on dorsalplantar radiographs) and 30 controls participated. Measures included: hallux plantarflexion and abduction strength, walking performance, postural sway and forefoot plantar pressures. Multiple analysis of covariance and pairwise comparisons (p<0.05, Bonferroni adjustment) were used to investigate differences between groups, adjusting for age, sex, body mass index and foot pain. Results Hallux plantarflexion and abduction strength was significantly reduced in those with moderate (mean differences: plantarflexion -45.8N, abduction -12.3N, p<0.001) and severe hallux valgus (plantarflexion -50.1N, p<0.001; abduction -11.2N, p=0.01) compared to controls. A significant reduction in hallux peak pressure and pressure-time integral was evident in moderate (peak pressure -90.8kPa, p<0.001) and severe hallux valgus (peak pressure -106.2kPa, p<0.001) compared to controls. Those with severe hallux valgus also demonstrated increased mediolateral postural sway in single leg stance compared to controls (3.5cm, p=0.01). Conclusion Moderate to severe hallux valgus is associated with reduced hallux plantar pressures and strength measures, while relatively normal function compared to controls was found in those with mild deformity. Greater understanding of specific functional deficits associated with different stages of hallux valgus will help inform clinical management and future research.
Resumo:
Synthesis of various functional nanoassemblies, by using a combination of low-pressure reactive plasma-enhanced chemical deposition and plasma-assisted rf magnetron sputtering deposition is reported. This paper details how selective generation and manipulation of the required building blocks and management of unwanted nanoparticle contaminants, can be used for plasma-aided nanofabrication of carbon nanotip microemitter structures, ultra-high aspect ratio semiconductor nanowires, ordered quantum dot arrays, and microporous hydroxyapatite bioceramics. Emerging challenges of the plasma-aided synthesis of functional nanofilms and nanoassemblies are also discussed.
Resumo:
The development, operation, and applications of two configurations of an integrated plasma-aided nanofabrication facility (IPANF) comprising low-frequency inductively coupled plasma-assisted, low-pressure, multiple-target RF magnetron sputtering plasma source, are reported. The two configurations of the plasma source have different arrangements of the RF inductive coil: a conventional external flat spiral "pancake" coil and an in-house developed internal antenna comprising two orthogonal RF current sheets. The internal antenna configuration generates a "unidirectional" RF current that deeply penetrates into the plasma bulk and results in an excellent uniformity of the plasma over large areas and volumes. The IPANF has been employed for various applications, including low-temperature plasma-enhanced chemical vapor deposition of vertically aligned single-crystalline carbon nanotips, growth of ultra-high aspect ratio semiconductor nanowires, assembly of optoelectronically important Si, SiC, and Al1-xInxN quantum dots, and plasma-based synthesis of bioactive hydroxyapatite for orthopedic implants.
Resumo:
The results of numerical simulations of nanometer precision distributions of microscopic ion fluxes in ion-assisted etching of nanoscale features on the surfaces of dielectric materials using a self-assembled monolayer of spherical nanoparticles as a mask are presented. It is shown that the ion fluxes to the substrate and nanosphere surfaces can be effectively controlled by the plasma parameters and the external bias applied to the substrate. By proper adjustment of these parameters, the ion flux can be focused onto the areas uncovered by the nanospheres. Under certain conditions, the ion flux distributions feature sophisticated hexagonal patterns, which may lead to very different nanofeature etching profiles. The results presented are generic and suggest viable ways to overcome some of the limitations of the existing plasma-assisted nanolithography.
Resumo:
Uniformity of postprocessing of large-area, dense nanostructure arrays is currently one of the greatest challenges in nanoscience and nanofabrication. One of the major issues is to achieve a high level of control in specie fluxes to specific surface areas of the nanostructures. As suggested by the numerical experiments in this work, this goal can be achieved by manipulating microscopic ion fluxes by varying the plasma sheath and nanorod array parameters. The dynamics of ion-assisted deposition of functional monolayer coatings onto two-dimensional carbon nanorod arrays in a hydrogen plasma is simulated by using a multiscale hybrid numerical simulation. The numerical results show evidence of a strong correlation between the aspect ratios and nanopattern positioning of the nanorods, plasma sheath width, and densities and distributions of microscopic ion fluxes. When the spacing between the nanorods and/or their aspect ratios are larger, and/or the plasma sheath is wider, the density of microscopic ion current flowing to each of the individual nanorods increases, thus reducing the time required to apply a functional monolayer coating down to 11 s for a 7-μm-wide sheath, and to 5 s for a 50-μm-wide sheath. The computed monolayer coating development time is consistent with previous experimental reports on plasma-assisted functionalization of related carbon nanostructures [B. N. Khare et al., Appl. Phys. Lett. 81, 5237 (2002)]. The results are generic in that they can be applied to a broader range of plasma-based processes and nanostructures, and contribute to the development of deterministic strategies of postprocessing and functionalization of various nanoarrays for nanoelectronic, biomedical, and other emerging applications.
Resumo:
Brain decoding of functional Magnetic Resonance Imaging data is a pattern analysis task that links brain activity patterns to the experimental conditions. Classifiers predict the neural states from the spatial and temporal pattern of brain activity extracted from multiple voxels in the functional images in a certain period of time. The prediction results offer insight into the nature of neural representations and cognitive mechanisms and the classification accuracy determines our confidence in understanding the relationship between brain activity and stimuli. In this paper, we compared the efficacy of three machine learning algorithms: neural network, support vector machines, and conditional random field to decode the visual stimuli or neural cognitive states from functional Magnetic Resonance data. Leave-one-out cross validation was performed to quantify the generalization accuracy of each algorithm on unseen data. The results indicated support vector machine and conditional random field have comparable performance and the potential of the latter is worthy of further investigation.
Resumo:
Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.
Resumo:
Introduction There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine. Intervertebral stapling is a leading method of fusionless corrective surgery. Although used for a number of years, there is limited evidence as to the effect these staples have on the stiffness of the functional spinal unit. Materials and Methods Thoracic spines from 6-8 week old calves were dissected and divided into motion segments including levels T4-T11 (n=14). Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. This torque was found sufficient to achieve physiologically representative ranges of movement. The segments were initially tested uninstrumented with data collected from the tenth load cycle. Next a left anterolateral Shape Memory Alloy (SMA) staple was inserted (Medtronic Sofamor Danek, USA). Biomechanical testing was repeated as before with data collected from the tenth load cycle. Results In flexion/extension there was an insignificant drop in stiffness of 3% (p=0.478). In lateral bending there was a significant drop in stiffness of 21% (p<0.001). This was mainly in lateral bending away from the staple, where the stiffness reduced by 30% (p<0.001). This was in contrast to lateral bending towards the staple where it dropped by 12% which was still statistically significant (p=0.036). In axial rotation there was an overall near significant drop in stiffness of 11% (p=0.076). However, this was more towards the side of the staple measuring a decrease of 14% as opposed to 8% away from the staple. In both cases it was a statistically insignificant drop (p=0.134 and p=0.352 respectively). Conclusion Insertion of intervertebral SMA staples results in a significant reduction in motion segment stiffness in lateral bending especially in the direction away from the staple. The staple had less effect on axial rotation stiffness and minimal effect on flexion/extension stiffness.
Resumo:
Adopting both the resource-based view and dynamic capability theory this study advances the contention that firms must possess both resources and capabilities at a superior level to achieve superior customer and product performance. To examine this contention this study investigates the individual effect of the complementarity between marketing resources and capability and complementarity between innovation resources and capability on customer and product performance respectively. The results of a survey of 171 B2B manufacturing firms show a significant main effect for complementarity between marketing resources–capability and complementarity between innovation resources–capability on customer and product performance. The findings also show that complementarity marketing resources–capability has a stronger positive relationship with customer performance than with product performance, while complementarity between innovation resources–capability has a stronger positive relationship with product performance than with customer performance.
Resumo:
Cells are the fundamental building block of plant based food materials and many of the food processing born structural changes can fundamentally be derived as a function of the deformations of the cellular structure. In food dehydration the bulk level changes in porosity, density and shrinkage can be better explained using cellular level deformations initiated by the moisture removal from the cellular fluid. A novel approach is used in this research to model the cell fluid with Smoothed Particle Hydrodynamics (SPH) and cell walls with Discrete Element Methods (DEM), that are fundamentally known to be robust in treating complex fluid and solid mechanics. High Performance Computing (HPC) is used for the computations due to its computing advantages. Comparing with the deficiencies of the state of the art drying models, the current model is found to be robust in replicating drying mechanics of plant based food materials in microscale.
Resumo:
Background JK1 is a novel cancer-related gene with unknown functional role in carcinogenesis. The aim of this study is to investigate the role of JK1 gene in carcinogenesis in an in vitro cell proliferation and migration analysis model. Methods Small hairpin RNAs (shRNA) were designed to knock-down JK1 expression in colon cancer cell line (SW480) using transduction ready lentiviral particles. Cell proliferation and cell migration assays were performed on multiple extracellular matrices to investigate the cellular effects of JK1 in colon cancer cells. A non-cancer colonic epithelial cell line (FHC) was used to compare the expression of JK1 in cancer cell line. Results JK1 knock-down did not affect cellular proliferation or survival in colon cancer. However, the manipulation increased cancer cell migration rates on collagen and fibronectin substrates. Conclusions JK1 was shown for the first time to have a functional role in the pathogenesis of colon cancer. The results imply that JK1 represses the capacity of cancer cells to migrate within their tissue. They also concurred with the previous findings of JK1 activity correlations with clinical and pathological features in colon cancer. The capacity may have utility as a means to prevent cancer cells forming metastases.
Resumo:
Ataxia oculomotor apraxia type 2 (AOA2) is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia and oculomotor apraxia. The gene mutated in AOA2, SETX, encodes senataxin, a putative DNA/RNA helicase which shares high homology to the yeast Sen1p protein and has been shown to play a role in the response to oxidative stress. To investigate further the function of senataxin, we identified novel senataxin-interacting proteins, the majority of which are involved in transcription and RNA processing, including RNA polymerase II. Binding of RNA polymerase II to candidate genes was significantly reduced in senataxin deficient cells and this was accompanied by decreased transcription of these genes, suggesting a role for senataxin in the regulation/modulation of transcription. RNA polymerase II-dependent transcription termination was defective in cells depleted of senataxin in keeping with the observed interaction of senataxin with poly(A) binding proteins 1 and 2. Splicing efficiency of specific mRNAs and alternate splice-site selection of both endogenous genes and artificial minigenes were altered in senataxin depleted cells. These data suggest that senataxin, similar to its yeast homolog Sen1p, plays a role in coordinating transcriptional events, in addition to its role in DNA repair.