952 resultados para Free surface flows
Resumo:
P>Vegetable oils can be extracted using ethanol as solvent. The main goal of this work was to evaluate the ethanol performance on the extraction process of rice bran oil. The influence of process variables, solvent hydration and temperature was evaluated using the response surface methodology, aiming to maximise the soluble substances and gamma-oryzanol transfer and minimise the free fatty acids extraction and the liquid content in the underflow solid. It can be noted that oil solubility in ethanol was highly affected by the water content. The free fatty acids extraction is improved by increasing the moisture content in the solvent. Regarding the gamma-oryzanol, it can be observed that its extraction is affected by temperature when low level of water is added to ethanol. On the other hand, the influence of temperature is minimised with high levels of water in the ethanol.
Resumo:
This work evaluated the effect of pressure and temperature on yield and characteristic flavour intensity of Brazilian cherry (Eugenia uniflora L) extracts obtained by supercritical CO(2) using response surface analysis, which is a simple and efficient method for first inquiries. A complete central composite 2(2) factorial experimental design was applied using temperature (ranging from 40 to 60 degrees C) and pressure (from 150 to 250 bar) as independent variables. A second order model proved to be predictive (p <= 0.05) for the extract yield as affected by pressure and temperature, with better results being achieved at the central point (200 bar and 50 degrees C). For the flavour intensity, a first order model proved to be predictive (p <= 0.05) showing the influence of temperature. Greater characteristic flavour intensity in extracts was obtained for relatively high temperature (> 50 degrees C), Therefore, as far as Brazilian cherry is concerned, optimum conditions for achieving higher extract yield do not necessarily coincide to those for obtaining richer flavour intensity. Industrial relevance: Supercritical fluid extraction (SFE) is an emerging clean technology through which one may obtain extracts free from organic solvents. Extract yields from natural products for applications in food, pharmaceutical and cosmetic industries have been widely disseminated in the literature. Accordingly, two lines of research have industrial relevance, namely, (i) operational optimization studies for high SFE yields and (ii) investigation on important properties extracts are expected to present (so as to define their prospective industrial application). Specifically, this work studied the optimization of SFE process to obtain extracts from a tropical fruit showing high intensity of its characteristic flavour, aiming at promoting its application in natural aroma enrichment of processed foods. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sea surface gradients derived from the Geosat and ERS-1 satellite altimetry geodetic missions were integrated with marine gravity data from the National Geophysical Data Center and Brazilian national surveys. Using the least squares collocation method, models of free-air gravity anomaly and geoid height were calculated for the coast of Brazil with a resolution of 2` x 2`. The integration of satellite and shipborne data showed better statistical results in regions near the coast than using satellite data only, suggesting an improvement when compared to the state-of-the-art global gravity models. Furthermore, these results were obtained with considerably less input information than was used by those reference models. The least squares collocation presented a very low content of high-frequency noise in the predicted gravity anomalies. This may be considered essential to improve the high resolution representation of the gravity field in regions of ocean-continent transition. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We provide an affirmative answer to the C(r)-Closing Lemma, r >= 2, for a large class of flows defined on every closed surface.
Resumo:
Purpose - The purpose of this paper is to develop a novel unstructured simulation approach for injection molding processes described by the Hele-Shaw model. Design/methodology/approach - The scheme involves dual dynamic meshes with active and inactive cells determined from an initial background pointset. The quasi-static pressure solution in each timestep for this evolving unstructured mesh system is approximated using a control volume finite element method formulation coupled to a corresponding modified volume of fluid method. The flow is considered to be isothermal and non-Newtonian. Findings - Supporting numerical tests and performance studies for polystyrene described by Carreau, Cross, Ellis and Power-law fluid models are conducted. Results for the present method are shown to be comparable to those from other methods for both Newtonian fluid and polystyrene fluid injected in different mold geometries. Research limitations/implications - With respect to the methodology, the background pointset infers a mesh that is dynamically reconstructed here, and there are a number of efficiency issues and improvements that would be relevant to industrial applications. For instance, one can use the pointset to construct special bases and invoke a so-called ""meshless"" scheme using the basis. This would require some interesting strategies to deal with the dynamic point enrichment of the moving front that could benefit from the present front treatment strategy. There are also issues related to mass conservation and fill-time errors that might be addressed by introducing suitable projections. The general question of ""rate of convergence"" of these schemes requires analysis. Numerical results here suggest first-order accuracy and are consistent with the approximations made, but theoretical results are not available yet for these methods. Originality/value - This novel unstructured simulation approach involves dual meshes with active and inactive cells determined from an initial background pointset: local active dual patches are constructed ""on-the-fly"" for each ""active point"" to form a dynamic virtual mesh of active elements that evolves with the moving interface.
Resumo:
We discuss potential caveats when estimating topologies of 3D brain networks from surface recordings. It is virtually impossible to record activity from all single neurons in the brain and one has to rely on techniques that measure average activity at sparsely located (non-invasive) recording sites Effects of this spatial sampling in relation to structural network measures like centrality and assortativity were analyzed using multivariate classifiers A simplified model of 3D brain connectivity incorporating both short- and long-range connections served for testing. To mimic M/EEG recordings we sampled this model via non-overlapping regions and weighted nodes and connections according to their proximity to the recording sites We used various complex network models for reference and tried to classify sampled versions of the ""brain-like"" network as one of these archetypes It was found that sampled networks may substantially deviate in topology from the respective original networks for small sample sizes For experimental studies this may imply that surface recordings can yield network structures that might not agree with its generating 3D network. (C) 2010 Elsevier Inc All rights reserved
Resumo:
Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.
Resumo:
Characterization of Sterculia striate polysaccharide (SSP) films adsorbed onto Si wafers from solutions prepared in ethyl methyl imidazolium acetate (EmimAc), water or NaOH 0.01 mol/L was systematically studied by means of ellipsometry, atomic force microscopy and contact angle measurements. SSP adsorbed from EmimAc onto Si wafer as homogeneous monolayers (similar to 0.5 nm thick), while from water or NaOH 0.01 mol/L SSP formed layers of similar to 4.0 nm and similar to 1.5 nm thick, respectively. Surface energy values found for SSP adsorbed from EmimAc or water were 68 +/- 2 mJ/m(2) and 65 +/- 2 mJ/m(2), respectively, whereas from NaOH it amounted to 57 +/- 3 mJ/m(2). The immobilization of lysozyme (LYS) onto SSP films was also investigated. The mean thickness of LYS (d(LYS)) immobilized onto SSP films adsorbed from each solvent tended to increase with the decrease of gamma(P)(S) and gamma(total)(S). However, the enzymatic activity of LYS molecules was higher when they were immobilized onto SSP films with higher gamma(P)(S) and gamma(total)(S) values. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Three water-insoluble, micelle-anchored flavylium salts, 7-hydroxy-3-octyl-flavylium chloride, 4`-hexyl-7-hydroxyflavylium chloride, and 6-hexyl-7-hydroxy-4-methyl-flavylium chloride, have been employed to probe excited-state prototropic reactions in micellar sodium dodecyl sulfate (SDS). In SDS micelles, the fluorescence decays of these three flavylium salts are tetraexponential functions in the pH range from 1.0 to 4.6 at temperatures from 293 to 318 K. The four components of the decays are assigned to Four kinetically coupled excited species in the micelle: specifically, promptly deprotonable (AH(+)*) and nonpromptly deprotonable (AH(h)(+)*) orientations of the acid in the micelle. the base-proton geminate pair (A*center dot center dot center dot H(+)), and the free conjugate base (A*). The initial prompt deprotonation to form the germinate pair occurs at essentially the same rate (k(d) similar to 6-7 x 10(10) s(-1)) for all three photoacids. Recombination of the germinate pair is similar to 3-fold faster than the rate of proton escape from the pair (k(rec) similar to 3 x 10(10) s(-1) and k(diss) similar to 1 x 10(10) s(-1)), corresponding to an intrinsic recombination efficiency of the pair of similar to 75%. Finally, the reprotonation of the short-lived free A* (200-350 ps, depending oil the photoacid) has two components, only one of which depends oil the proton concentration in the intermicellar aqueous phase. Ultrafast transfer of the proton to water and substantial compartmentalization of the photogenerated proton at the micelle surface Oil the picosecond time scale strongly suggest preferential transfer of the proton to preformed hydrogen-bonded water bridges between the photoacid and the anionic headgroups. This localizes the proton in the vicinity of the excited base much more efficiently than ill bulk water, resulting ill the predominance of geminate re reprotonation at the micelle surface.
Resumo:
Cellulase is an enzymatic complex which synergically promotes the degradation of cellulose to glucose. The adsorption behavior of cellulase from Trichoderma reesei onto Si wafers or amino-terminated surfaces was investigated by means of ellipsometry and atomic force microscopy (AFM) as a function of temperature. Upon increasing temperature from (24 +/- 1) to (60 +/- 1) degrees C, adsorption of cellulase became faster and more pronounced and the mean roughness of cellulase adsorbed layers increased. In the case of cellulase adsorbed onto Si wafers, Arrhenius`s plot allowed us to estimate the adsorption energy as 24.2 kJ mol(-1). The hydrolytic activity of free cellulase and cellulase immobilized onto Si wafers was tested using cellulose dispersions as substrates. The incubation temperature ranged from (37 +/- 1) to (60 +/- 1) degrees C. The highest efficiency was observed at (60 +/- 1) degrees C. The amount of glucose produced by free cellulase was similar to 20% higher than that obtained from immobilized cellulase. However, immobilizing cellulase onto Si wafers proved to be advantageous because they could be reused six times while retaining their original activity level. Such an effect was attributed to surface hydration, which prevents enzyme denaturation. The hydrolytic activity of cellulase immobilized onto amino-terminated surfaces was slightly lower than that observed for cellulase adsorbed onto Si wafers, and reuse was not possible.
Resumo:
The nature of the protective film formed by benzotriazole (BTAH) on the surface of the 90/10 CuNi alloy in deaerated 0.5 mol L-1 H2SO4 solution containing Fe(III) ions as oxidant was investigated by weight-loss, calorimetric measurements, and by surface-enhanced Raman spectroscopy (SERS). The SERS measurements show that the protective film is composed by the [Cu(I)BTA](n), polymeric complex and that the BTAH molecules are also adsorbed on the electrode surface. A modification of the BET isotherm for adsorption of gases ill solids is proposed to describe the experimental results obtained from weight-loss experiments that suggest an adsorption in multilayers. Electrochemical studies of copper and nickel in 0.5 mol L-1 H2SO4 in presence and absence of BTAH have also been made as an aid to interpret the results. The calculated adsorption free energy of the cuprous benzotriazolate on the surface of the alloy is in accordance with the value for pure copper. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Defects are often present in rolled products, such as wire rod. The markets demand for wire rod without any defects has increased. In the final wire rod products, defects originating from the steel making, casting, pre-rolling of billets and during the wire rod rolling can appear. In this work, artificial V-shaped longitudinal surface cracks has been analysed experimentally and by means of FEM. The results indicate that the experiments and FEM calculations show the same tendency except in two cases, where instability due to a fairly “round” false round bars disturbed the experiment. FE studies in combination with practical experiments are necessary in order to understand the behaviour of the material flows in the groove and to explain whether the crack will open up as a V-shape or if it will be closed as an I-shape.
Resumo:
In the past few years, libraries have started to design public programs that educate patrons about different tools and techniques to protect personal privacy. But do end user solutions provide adequate safeguards against surveillance by corporate and government actors? What does a comprehensive plan for privacy entail in order that libraries live up to their privacy values? In this paper, the authors discuss the complexity of surveillance architecture that the library institution might confront when seeking to defend the privacy rights of patrons. This architecture consists of three main parts: physical or material aspects, logical characteristics, and social factors of information and communication flows in the library setting. For each category, the authors will present short case studies that are culled from practitioner experience, research, and public discourse. The case studies probe the challenges faced by the library—not only when making hardware and software choices, but also choices related to staffing and program design. The paper shows that privacy choices intersect not only with free speech and chilling effects, but also with questions that concern intellectual property, organizational development, civic engagement, technological innovation, public infrastructure, and more. The paper ends with discussion of what libraries will require in order to sustain and improve efforts to serve as stewards of privacy in the 21st century.
Resumo:
Experiments were performed to study the effect of surface properties of a vertical channel heated by a source of thermal radiation to induce air flow through convection. Two channels (solar chimney prototype) were built with glass plates, forming a structure of truncated pyramidal geometry. We considered two surface finishes: transparent and opaque. Each stack was mounted on a base of thermal energy absorber with a central opening for passage of air, and subjected to heating by a radiant source comprises a bank of incandescent bulbs and were performed field tests. Thermocouples were fixed on the bases and on the walls of chimneys and then connected to a data acquisition system in computer. The air flow within the chimney, the speed and temperature were measured using a hot wire anemometer. Five experiments were performed for each stack in which convective flows were recorded with values ranging from 17 m³ / h and 22 m³ / h and air flow velocities ranging from 0.38 m / s and 0.56 m / s for the laboratory tests and air velocities between 0.6 m/s and 1.1m/s and convective airflows between 650 m³/h and 1150 m³/h for the field tests. The test data were compared to those obtained by semi-empirical equations, which are valid for air flow induced into channels and simulated data from 1st Thermodynamics equation. It was found that the chimney with transparent walls induced more intense convective flows than the chimney with matte finish. Based on the results obtained can be proposed for the implementation of prototype to exhaust fumes, mists, gases, vapors, mists and dusts in industrial environments, to help promote ventilation and air renewal in built environments and for drying materials, fruits and seeds
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)