906 resultados para Fixed-time artificial insemination
Resumo:
Background: In an artificial pancreas (AP), the meals are either manually announced or detected and their size estimated from the blood glucose level. Both methods have limitations, which result in suboptimal postprandial glucose control. The GoCARB system is designed to provide the carbohydrate content of meals and is presented within the AP framework. Method: The combined use of GoCARB with a control algorithm is assessed in a series of 12 computer simulations. The simulations are defined according to the type of the control (open or closed loop), the use or not-use of GoCARB and the diabetics’ skills in carbohydrate estimation. Results: For bad estimators without GoCARB, the percentage of the time spent in target range (70-180 mg/dl) during the postprandial period is 22.5% and 66.2% for open and closed loop, respectively. When the GoCARB is used, the corresponding percentages are 99.7% and 99.8%. In case of open loop, the time spent in severe hypoglycemic events (<50 mg/dl) is 33.6% without the GoCARB and is reduced to 0.0% when the GoCARB is used. In case of closed loop, the corresponding percentage is 1.4% without the GoCARB and is reduced to 0.0% with the GoCARB. Conclusion: The use of GoCARB improves the control of postprandial response and glucose profiles especially in the case of open loop. However, the most efficient regulation is achieved by the combined use of the control algorithm and the GoCARB.
Resumo:
AIM To assess the long-term success of maxillary fixed retainers, investigate their effect on gingival health, and analyse the survival rate after a mean period of 7 years (minimum 5 years) in retention. SUBJECTS AND METHODS Forty one subjects were included in the study A clinical examination of the upper canine to canine region including gingival index (GI), plaque index, probing depth, and bleeding on probing (BOP) was performed. Intraoral photographs and dental impressions were taken and irregularity index was determined and compared to the values of the immediate post-therapeutic values; failures of retainers were also recorded and analysed. RESULTS The mean observed retention time was 7 years and 5 months. Irregularity index: Changes occurring during retention were statistically different between the lateral incisors bonded to retainers and the canines not bonded to retainers. Only six patients showed changes in irregularity index of the lateral incisors in spite of a retainer in place. Periodontal health: The median value of the GI for all teeth bonded to upper retainers was 1.10 and the median value of the plaque index (PI) was 1.14. PI was not a significant predictor of GI. The overall BOP of the bonded teeth to the retainer for each participant was 22.3 per cent. Failure rate: Twenty-eight out of 41 patients experienced no failure of the upper bonded retainer (68.3 per cent). Detachments were the most frequent incidents. CONCLUSION Although plaque accumulation might be increased in patients with already poor oral hygiene, maxillary bonded retainers caused no significant negative effects on the periodontal health.
Resumo:
Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.
Resumo:
The present report describes a real-time PCR-based procedure to reliably determine the quantity of Leishmania amastigotes in relation to the amount of host tissue in histological skin sections from canine and equine cases of cutaneous leishmaniasis. The novel diagnostic Leishmania-PCR has a detection limit of <0.02 amastigotes per μg tissue, which corresponds well to the detection limit of immunohistochemistry and is far beyond that of conventional histology. Our results emphasise the importance of PCR to complement routine histology of cutaneous leishmaniasis cases, particularly in laboratories in which no immunohistochemical assay is available.
Resumo:
BACKGROUND Patients with downbeat nystagmus syndrome suffer from oscillopsia, which leads to an unstable visual perception and therefore impaired visual acuity. The aim of this study was to use real-time computer-based visual feedback to compensate for the destabilizing slow phase eye movements. METHODS The patients were sitting in front of a computer screen with the head fixed on a chin rest. The eye movements were recorded by an eye tracking system (EyeSeeCam®). We tested the visual acuity with a fixed Landolt C (static) and during real-time feedback driven condition (dynamic) in gaze straight ahead and (20°) sideward gaze. In the dynamic condition, the Landolt C moved according to the slow phase eye velocity of the downbeat nystagmus. The Shapiro-Wilk test was used to test for normal distribution and one-way ANOVA for comparison. RESULTS Ten patients with downbeat nystagmus were included in the study. Median age was 76 years and the median duration of symptoms was 6.3 years (SD +/- 3.1y). The mean slow phase velocity was moderate during gaze straight ahead (1.44°/s, SD +/- 1.18°/s) and increased significantly in sideward gaze (mean left 3.36°/s; right 3.58°/s). In gaze straight ahead, we found no difference between the static and feedback driven condition. In sideward gaze, visual acuity improved in five out of ten subjects during the feedback-driven condition (p = 0.043). CONCLUSIONS This study provides proof of concept that non-invasive real-time computer-based visual feedback compensates for the SPV in DBN. Therefore, real-time visual feedback may be a promising aid for patients suffering from oscillopsia and impaired text reading on screen. Recent technological advances in the area of virtual reality displays might soon render this approach feasible in fully mobile settings.
Resumo:
PURPOSE To compare time-efficiency in the production of implant crowns using a digital workflow versus the conventional pathway. MATERIALS AND METHODS This prospective clinical study used a crossover design that included 20 study participants receiving single-tooth replacements in posterior sites. Each patient received a customized titanium abutment plus a computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia suprastructure (for those in the test group, using digital workflow) and a standardized titanium abutment plus a porcelain-fused-to-metal crown (for those in the control group, using a conventional pathway). The start of the implant prosthetic treatment was established as the baseline. Time-efficiency analysis was defined as the primary outcome, and was measured for every single clinical and laboratory work step in minutes. Statistical analysis was calculated with the Wilcoxon rank sum test. RESULTS All crowns could be provided within two clinical appointments, independent of the manufacturing process. The mean total production time, as the sum of clinical plus laboratory work steps, was significantly different. The mean ± standard deviation (SD) time was 185.4 ± 17.9 minutes for the digital workflow process and 223.0 ± 26.2 minutes for the conventional pathway (P = .0001). Therefore, digital processing for overall treatment was 16% faster. Detailed analysis for the clinical treatment revealed a significantly reduced mean ± SD chair time of 27.3 ± 3.4 minutes for the test group compared with 33.2 ± 4.9 minutes for the control group (P = .0001). Similar results were found for the mean laboratory work time, with a significant decrease of 158.1 ± 17.2 minutes for the test group vs 189.8 ± 25.3 minutes for the control group (P = .0001). CONCLUSION Only a few studies have investigated efficiency parameters of digital workflows compared with conventional pathways in implant dental medicine. This investigation shows that the digital workflow seems to be more time-efficient than the established conventional production pathway for fixed implant-supported crowns. Both clinical chair time and laboratory manufacturing steps could be effectively shortened with the digital process of intraoral scanning plus CAD/CAM technology.
Resumo:
PURPOSE The aim of this short communication was to analyze time-dependent changes of the supraimplant mucosa architecture in the esthetic zone. MATERIALS AND METHODS Five patients underwent single-tooth replacement with implant crowns in the anterior maxilla. The supraimplant soft tissue was conditioned with fixed provisional crowns. Quadrantlike digital impressions were taken with an intraoral optical scanning device at three time points: t0, immediately after removal of the provisional (baseline); t1, after 5 minutes; and t2, after 10 minutes. To analyze time-dependent mucosal changes, the corresponding digital files were superimposed for each patient, and baseline (t0) scans were compared with t1 and t2 scans, respectively. Wilcoxon rank sum tests were used for statistical calculations with a strict level of significance at P < .01. RESULTS Mean values for supraimplant soft tissue changes were statistically significantly different after 5 minutes (5.5%; standard deviation ± 0.3%) in comparison to the results after 10 minutes (21.7%; standard deviation ± 1.8%). The direction of mucosa shrinkage showed a trend toward palatal sites. CONCLUSION Based on the findings of this analysis, changes in supraimplant mucosa architecture seem to be affected only slightly during the first 5 minutes after removal of soft tissue support.
Resumo:
In this paper we introduce technical efficiency via the intercept that evolve over time as a AR(1) process in a stochastic frontier (SF) framework in a panel data framework. Following are the distinguishing features of the model. First, the model is dynamic in nature. Second, it can separate technical inefficiency from fixed firm-specific effects which are not part of inefficiency. Third, the model allows one to estimate technical change separate from change in technical efficiency. We propose the ML method to estimate the parameters of the model. Finally, we derive expressions to calculate/predict technical inefficiency (efficiency).
Resumo:
The objectives of this research were (1) to study the effect of contact pressure, compression time, and liquid (moisture content of the fabric) on the transfer by sliding contact of non-fixed surface contamination to protective clothing constructed from uncoated, woven fabrics, (2) to study the effect of contact pressure, compression time, and liquid content on the subsequent penetration through the fabric, and (3) to determine if varying the type of contaminant changes the effect of contact pressure, compression time, and liquid content on the transfer by sliding contact and penetration of non-fixed surface contamination. ^ It was found that the combined influence of the liquid (moisture content of the fabric), load (contact pressure), compression time, and their interactions significantly influenced the penetration of all three test agents, sucrose- 14C, triolein-3H, and starch-14C through 100% cotton fabric. The combined influence of the statistically significant main effects and their interactions increased the penetration of triolein- 3H by 32,548%, sucrose-14C by 7,006%, and starch- 14C by 1,900%. ^
Resumo:
The dataset contains raw data (quantification cycle) for a study which determined the most suitable hepatic reference genes for normalisation of qPCR data orginating from juvenile Atlantic salmon (14 days) exposed to 14 and 22 degrees C. These results will be useful for anyone wanting to study the effects of climate change/elevated temperature on reproductive physiology of fish (and perhaphs other vertebrates).
Resumo:
Vertical distributions and diel migrations of the main species of micronekton, four euphausiids, one mysid, one decapod and three fishes, were described in detail in the 0-1000 m water column on a fixed station in the Northwestern Mediterranean Sea. The euphausiids Euphausia krohni and Thysanopoda aequalis, the decapod Gennadas elegans and, to a lesser extent, the fish Argyropelecus hemigymnus were shown to perform clear diel vertical migrations. Results of horizontal hauls at a given depth around sunrise and sunset showed a marked diurnal symmetry of the migratory cycles, particularly for E.krohni, T.aequalis and G.elegans. The behaviour of the euphausiid Nematoscelis megalops was more complex: it presented a repetitive bimodal day distribution and only part of its population migrated. As very weak or non-migrators we found the euphausiid Stylocheiron longicorne and the bathypelagic mysid Eucopia unguiculata, for which migration concerned only some of the older individuals. The fishes Cyclothone braueri and Cyclothone pygmaea appeared to be non-migrants. As depth increased, C.braueri was replaced by C.pygmaea, with maximum concentrations at 350-550 and 550-700 m depth, respectively.
Resumo:
Plume-top altitude time series of the volcanic plume during the eruption of Grímsvötn in Iceland 21-28 May 2011. The altitude was estimated from weather radar echo top data from two weather radars, Keflavik and Klaustur. Keflavik radar is a fixed position C-band weather radar close to Keflavik International Airport, at 64°01.583'N, 22°38.150'W. The height of the antenna is 47 m a.s.l. and the distance to Grímsvötn volcano is 257 km. Klaustur radar is a mobile X-band weather radar located close to Kirkjubaejarklaustur, at 63°46.500'N, 17°57.817'W. The height of the antenna is also 47 m a.s.l. and the distance to Grímsvötn volcano is 75 km.
Resumo:
While summer Arctic sea-ice extent has decreased over the past three decades, it is subject to large interannual and regional variations. Methodological challenges in measuring ice thickness continue to hamper our understanding of the response of the ice-thickness distribution to recent change, limiting the ability to forecast sea-ice change over the next decade. We present results from a 2400 km long pan-Arctic airborne electromagnetic (EM) ice thickness survey in April 2009, the first-ever large-scale EM thickness dataset obtained by fixed-wing aircraft over key regions of old ice in the Arctic Ocean between Svalbard and Alaska. The data provide detailed insight into ice thickness distributions characteristic for the different regions. Comparison with previous EM surveys shows that modal thicknesses of old ice had changed little since 2007, and remained within the expected range of natural variability.
Resumo:
In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2 - 70 mmol m**-2 d**-1 for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in future EC-studies. Flume experiments were conducted in February 2013 at the Institute for Environmental Sciences, University of Koblenz-Landau Landau. Experiments were performed in a closed oval-shaped acrylic glass flume with cross-sectional width of 4 cm and height of 10 cm and total length of 54 cm. The fluid flow was induced by a propeller driven by a motor and mean flow velocities of up to 20 cm s-1 were generated by applying voltages between 0 V and 4 V DC. The flume was completely sealed with an acrylic glass cover. Oxygen sensors were inserted through rubber seal fittings and allowed positioning the sensors with inclinations to the main flow direction of ~60°, ~95° and ~135°. A Clark type electrochemical O2 microsensor with a low stirring sensitivity (0.7%) was tested and a fast-responding needle-type O2 optode (PyroScience GmbH, Germany) was used as reference as optodes should not be stirring sensitive. Instantaneous three-dimensional flow velocities were measured at 7.4 Hz using stereoscopic particle image velocimetry (PIV). The velocity at the sensor tip was extracted. The correlation of the fluctuating O2 sensor signals and the fluctuating velocities was quantified with a cross-correlation analysis. A significant cross-correlation is equivalent to a significant artificial flux. For a total of 18 experiments the flow velocity was adjusted between 1.7 and 19.2 cm s**-1, and 3 different orientations of the electrochemical sensor were tested with inclination angles of ~60°, ~95° and ~135° with respect to the main flow direction. In experiments 16-18, wavelike flow was induced, whereas in all other experiments the motor was driven by constant voltages. In 7 experiments, O2 was additionally measured by optodes. Although performed simultaneously with the electrochemical sensor, optode measurements are listed as separate experiments (denoted by the attached 'op' in the filename), because the velocity time series was extracted at the optode tip, located at a different position in the flume.