797 resultados para Fermi accleration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last two decades, experimental progress in controlling cold atoms and ions now allows us to manipulate fragile quantum systems with an unprecedented degree of precision. This has been made possible by the ability to isolate small ensembles of atoms and ions from noisy environments, creating truly closed quantum systems which decouple from dissipative channels. However in recent years, several proposals have considered the possibility of harnessing dissipation in open systems, not only to cool degenerate gases to currently unattainable temperatures, but also to engineer a variety of interesting many-body states. This thesis will describe progress made towards building a degenerate gas apparatus that will soon be capable of realizing these proposals. An ultracold gas of ytterbium atoms, trapped by a species-selective lattice will be immersed into a Bose-Einstein condensate (BEC) of rubidium atoms which will act as a bath. Here we describe the challenges encountered in making a degenerate mixture of rubidium and ytterbium atoms and present two experiments performed on the path to creating a controllable open quantum system. The first experiment will describe the measurement of a tune-out wavelength where the light shift of $\Rb{87}$ vanishes. This wavelength was used to create a species-selective trap for ytterbium atoms. Furthermore, the measurement of this wavelength allowed us to extract the dipole matrix element of the $5s \rightarrow 6p$ transition in $\Rb{87}$ with an extraordinary degree of precision. Our method to extract matrix elements has found use in atomic clocks where precise knowledge of transition strengths is necessary to account for minute blackbody radiation shifts. The second experiment will present the first realization of a degenerate Bose-Fermi mixture of rubidium and ytterbium atoms. Using a three-color optical dipole trap (ODT), we were able to create a highly-tunable, species-selective potential for rubidium and ytterbium atoms which allowed us to use $\Rb{87}$ to sympathetically cool $\Yb{171}$ to degeneracy with minimal loss. This mixture is the first milestone creating the lattice-bath system and will soon be used to implement novel cooling schemes and explore the rich physics of dissipation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the interspecies scattering properties of ultracold Li-Cs mixtures in their two energetically lowest spin channels in the magnetic field range between 800 and 1000 G. Close to two broad Feshbach resonances (FR) we create weakly bound LiCs dimers by radio-frequency association and measure the dependence of their binding energy on the external magnetic field strength. Based on the binding energies and complementary atom loss spectroscopy of three other Li-Cs s-wave FRs we construct precise molecular singlet and triplet electronic ground state potentials using a coupled-channels calculation. We extract the Li-Cs interspecies scattering length as a function of the external field and obtain almost a ten-fold improvement in the precision of the values for the pole positions and widths of the s-wave FRs as compared to our previous work (Pires et al 2014 Phys. Rev. Lett. 112 250404). We discuss implications on the Efimov scenario and the universal geometric scaling for LiCsCs trimers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic diagrammatic expansion for Gutzwiller wavefunctions (DE-GWFs) proposed very recently is used for the description of the superconducting (SC) ground state in the two-dimensional square-lattice t-J model with the hopping electron amplitudes t (and t') between nearest (and next-nearest) neighbors. For the example of the SC state analysis we provide a detailed comparison of the method's results with those of other approaches. Namely, (i) the truncated DE-GWF method reproduces the variational Monte Carlo (VMC) results and (ii) in the lowest (zeroth) order of the expansion the method can reproduce the analytical results of the standard Gutzwiller approximation (GA), as well as of the recently proposed 'grand-canonical Gutzwiller approximation' (called either GCGA or SGA). We obtain important features of the SC state. First, the SC gap at the Fermi surface resembles a d(x2-y2) wave only for optimally and overdoped systems, being diminished in the antinodal regions for the underdoped case in a qualitative agreement with experiment. Corrections to the gap structure are shown to arise from the longer range of the real-space pairing. Second, the nodal Fermi velocity is almost constant as a function of doping and agrees semi-quantitatively with experimental results. Third, we compare the

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and assessing their selectivity in separating metallic and semiconducting SWNTs. Chapter 4 describes how optical phonon population extinction lifetime is affected by covalent functionalization and doping and includes discussions on static Raman linewidths. Increasing defect concentration is shown to decrease G-band phonon population lifetime and increase G-band linewidth. Doping only increases G-band linewidth, leaving non-equilibrium population decay rate unaffected. Phonon mediated electron scattering is especially strong in nanotubes making optical phonon decay of interest for device applications. Optical phonon decay also has implications on device thermal management. Chapter 5 treats doping of graphene showing ambient air can lead to inadvertent Fermi level shifts which exemplifies the sensitivity that sp2-bonded carbon nanostructures have to chemical doping through sidewall adsorption. Removal of this doping allows for an investigation of electron-phonon coupling dependence on temperature, also of interest for devices operating above room temperature. Finally, in Chapter 6, utilizing the information obtained in previous chapters, single carbon nanotube diodes are fabricated and characterized. Electrical performance shows these diodes are nearly ideal and photovoltaic response yields 1.4 nA and 205 mV of short circuit current and open circuit voltage from a single nanotube device. A summary and discussion of future directions in Chapter 7 concludes my work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. 1ES 1011+496 (z = 0.212) was discovered in very high-energy (VHE, E >100 GeV) γ rays with MAGIC in 2007. The absence of simultaneous data at lower energies led to an incomplete characterization of the broadband spectral energy distribution (SED). Aims. We study the source properties and the emission mechanisms, probing whether a simple one-zone synchrotron self-Compton (SSC) scenario is able to explain the observed broadband spectrum. Methods. We analyzed data in the range from VHE to radio data from 2011 and 2012 collected by MAGIC, Fermi-LAT, Swift, KVA, OVRO, and Metsähovi in addition to optical polarimetry data and radio maps from the Liverpool Telescope and MOJAVE. Results. The VHE spectrum was fit with a simple power law with a photon index of 3.69 ± 0.22 and a flux above 150 GeV of (1.46±0.16)×10^(−11) ph cm^(−2) s^(−1) . The source 1ES 1011+496 was found to be in a generally quiescent state at all observed wavelengths, showing only moderate variability from radio to X-rays. A low degree of polarization of less than 10% was measured in optical, while some bright features polarized up to 60% were observed in the radio jet. A similar trend in the rotation of the electric vector position angle was found in optical and radio. The radio maps indicated a superluminal motion of 1.8 ± 0.4 c, which is the highest speed statistically significant measured so far in a high-frequency-peaked BL Lac. Conclusions. For the first time, the high-energy bump in the broadband SED of 1ES 1011+496 could be fully characterized from 0.1 GeV to 1 TeV, which permitted a more reliable interpretation within the one-zone SSC scenario. The polarimetry data suggest that at least part of the optical emission has its origin in some of the bright radio features, while the low polarization in optical might be due to the contribution of parts of the radio jet with different orientations of the magnetic field with respect to the optical emission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was for the first time detected in the very high energy (VHE, E > 100 GeV) γ-ray band with a statistical significance of 5.9 σ. The integral flux above 150 GeV is estimated to be (2.0 ± 0.5) per cent of the Crab Nebula flux. We used contemporaneous high energy (HE, 100MeV < E < 100 GeV) γ-ray observations from Fermi-LAT (Large Area Telescope) to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be z = 0.34±0.15. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and the OVRO (Owens Valley Radio Observatory) telescope to study multifrequency characteristics of the source. We found no significant temporal variability of the flux in the HE and VHE bands. The flux in the optical and radio wavebands, on the other hand, did vary with different patterns. The spectral energy distribution (SED) of H1722+119 shows surprising behaviour in the ∼ 3×1014 −1018 Hz frequency range. It can be modelled using an inhomogeneous helical jet synchrotron self-Compton model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We define Landau quasiparticles within the Gutzwiller variational theory and derive their dispersion relation for general multiband Hubbard models in the limit of large spatial dimensions D. Thereby we reproduce our previous calculations which were based on a phenomenological effective single-particle Hamiltonian. For the one-band Hubbard model we calculate the frst-order corrections in 1/D and find that the corrections to the quasiparticle dispersions are small in three dimensions. They may be largely absorbed in a rescaling of the total bandwidth, unless the system is close to half band filling. Therefore, the Gutzwiller theory in the limit of large dimensions provides quasiparticle bands which are suitable for a comparison with real, three-dimensional Fermi liquids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the construction and characterization of a new apparatus that can produce degenerate quantum gases of strontium. The realization of degenerate gases is an important first step toward future studies of quantum magnetism. Three of the four stable isotopes of strontium have been cooled into the degenerate regime. The experiment can make nearly pure Bose-Einstein condensates containing approximately 1x10^4 atoms, for strontium-86, and approximately 4x10^5 atoms, for strontium-84. We have also created degenerate Fermi gases of strontium-87 with a reduced temperature, T/T_F of approximately 0.2. The apparatus will be able to produce Bose-Einstein condensates of strontium-88 with straightforward modifications. We also report the first experimental and theoretical results from the strontium project. We have developed a technique to accelerate the continuous loading of strontium atoms into a magnetic trap. By applying a laser addressing the 3P1 to 3S1 transition in our magneto-optical trap, the rate at which atoms populate the magnetically-trapped 3P2 state can be increased by up to 65%. Quantum degenerate gases of atoms in the metastable 3P0 and 3P2 states are a promising platform for quantum simulation of systems with long-range interactions. We have performed an initial numerical study of a method to transfer the ground state degenerate gases that we can currently produce into one of the metastable states via a three-photon transition. Numerical simulations of the Optical Bloch equations governing the three-photon transition indicate that >90% of a ground state degenerate gas can be transferred into a metastable state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed investigation both of the DC and of the AC electrical properties of the Schottky barrier formed between aluminium and electrodeposited poly(3-methylthiophene) is reported. The devices show rectification ratios up to 2 x 10(4) which can be increased further after post-metal annealing. The reverse characteristics of the devices follow predictions based on the image-force lowering of the Schottky barrier, from which the doping density can be estimated, As the forward voltage increases, the device current is limited by the bulk resistance of the polymer with some evidence for injection limitation at the gold counter-electrode at high bias. In the bulk-limited regime, the device current is thermally activated near room temperature with an activation energy in the range 0.2-0.3 eV. Below about 150 K the device current is almost independent of temperature. Capacitance-voltage plots obtained at frequencies well below the device relaxation frequency indicate the presence of two distinct acceptor states, A set of shallow acceptor states are active in forward bias and are believed to determine the bulk conductivity of the polymer. A set of deeper accepters are active only for very small forward voltages and for all reverse voltages, namely when band banding causes the Fermi energy to cross these states. The density of these deeper states is approximately an order of magnitude greater than that of the shallow states. Evidence is presented also for the influence of fabrication conditions on the formation of an insulating interfacial layer at the rectifying interface. The presence of such a layer leads to inversion at the polymer surface and a modification of the I-V characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed investigation both of the DC and of the AC electrical properties of the Schottky barrier formed between aluminium and electrodeposited poly(3-methylthiophene) is reported. The devices show rectification ratios up to 2 x 10(4) which can be increased further after post-metal annealing. The reverse characteristics of the devices follow predictions based on the image-force lowering of the Schottky barrier, from which the doping density can be estimated, As the forward voltage increases, the device current is limited by the bulk resistance of the polymer with some evidence for injection limitation at the gold counter-electrode at high bias. In the bulk-limited regime, the device current is thermally activated near room temperature with an activation energy in the range 0.2-0.3 eV. Below about 150 K the device current is almost independent of temperature. Capacitance-voltage plots obtained at frequencies well below the device relaxation frequency indicate the presence of two distinct acceptor states, A set of shallow acceptor states are active in forward bias and are believed to determine the bulk conductivity of the polymer. A set of deeper accepters are active only for very small forward voltages and for all reverse voltages, namely when band banding causes the Fermi energy to cross these states. The density of these deeper states is approximately an order of magnitude greater than that of the shallow states. Evidence is presented also for the influence of fabrication conditions on the formation of an insulating interfacial layer at the rectifying interface. The presence of such a layer leads to inversion at the polymer surface and a modification of the I-V characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work reports some experimental results on the electrical AC behaviour of metal-undoped diamond Schottky diodes fabricated with a free-standing MPCVD diamond film (5 mum thick). The metals are gold for the ohmic contact and aluminium for the rectifier. The capacitance and loss tangent vs, frequency shows that capacitance presents a relaxation maximum at frequencies near 10 kHz at room temperature. Although the simple model (small equivalent circuit) can justify the values for the relaxation, it cannot justify the departure from the Debye model, also verified in the Cole-Cole plot. Taking into account the existence of traps in the depletion region, a best fit to the experimental results was obtained. The difference between the Fermi level and the band edge of 0.2-0.3 eV is in agreement with the activation energy found from the loss tangent analysis. The capacitance with applied voltage (Mott-Schottky plots) gives a defect density of 10(16) cm(-3) with contact potentials near 0.5 V and the profile of defect density obtained shows a major density (approx. 10(17) cm(-3)) in a layer with a thickness less than 50 nm from the junction, decreasing by one order of magnitude with increasing distance. Finally a structural model is proposed to explain the AC behaviour found. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo scopo di questa tesi è la trattazione della materia oscura partendo dalle evidenze sperimentali, ripercorrendo i possibili costituenti e riportando dati relativi a rivelazioni dirette ed indirette. Il primo capitolo è dedicato alla discussione delle due più importanti evidenze della presenza di materia oscura, ossia le curve di rotazione ed il Bullet Cluster, che risultano entrambe interazioni di tipo gravitazionale. Si provvede inoltre a fornire le due più plausibili soluzioni in grado di spiegare i risultati ottenuti dalle osservazioni sperimentali e a discutere la loro validità come modello per la descrizione di tali fenomeni. Il capitolo successivo è volto all'esposizione delle possibili particelle che compongono la materia oscura, discutendo quali siano le più probabili, e alla spiegazione della loro creazione nell'Universo primordiale. La terza parte è dedicata alle rilevazioni dirette, consistenti nello scattering fra particelle di materia oscura e nuclei, ed in particolare all'analisi del modello dei neutralini. Vengono poi riportati nello stesso capitolo i risultati di tali rilevazioni, con riferimento agli esperimenti CDMS II, XENON100 e LUX. Nel quarto capitolo si tratteranno i risultati delle rilevazioni indirette, ossia osservazioni di processi derivanti dall'annichilazione di materia oscura, e verranno riportati i risultati degli esperimenti più importanti, fra cui i più recenti sono Fermi-LAT e CTA (ancora in sviluppo). L'ultimo paragrafo è riservato ad un breve riassunto dei risultati e delle ipotesi trattate, per raccogliere i dati più importanti e fornire una visione generale della materia oscura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo scopo di questo lavoro è quello di analizzare i dati raccolti dal Large Area Telescope a bordo del satellite Fermi con l'obiettivo di ricavare il flusso di raggi-γ, di energia compresa tra 100 MeV e 300 GeV, prodotti dal Blazar PKS B1424-418 in un periodo compreso tra l'1 Gennaio 2012 e il 4 Settembre 2016. Secondo alcuni modelli questo blazar potrebbe essere infatti la prima sorgente di Ultra High Energy Cosmic Ray associata sperimentalmente all'emissione di neutrini. L'analisi dei dati è effettuata tramite il pacchetto di software Fermi Science Tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula have been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 hours of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 × 10^(−13) TeV cm^(−2)s^(−1) for the Geminga pulsar and 3.5 × 10^(−12) TeV cm^(−2)s^(−1) for the surrounding nebula at 50 GeV are the most constraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 years of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult.