920 resultados para Fairmount Park
Resumo:
In November 2006, the flood of record on the upper Nisqually River destroyed part of Sunshine Point Campground in Mount Rainier National Park, Washington. The Nisqually River migrated north and reoccupied five acres of its floodplain; Tahoma Creek partially avulsed into the west floodplain, topping banks of an undersized channel and flooding the campground. I assessed hazards to infrastructure at the old campground location, where the Park proposes to rebuild the remaining campground roads and sites. This assessment focuses on two major hazards: northward Nisqually River migration, which may reincorporate the floodplain into the river destroying infrastructure; and Tahoma Creek avulsions, which may flood the campgroud and deposit sediment burying campground infrastructure. I quantify northward migration by: estimating migration rates and changes to channel width; evaluating river occupation of the pre- and post-2006 campground; and estimating scour depths at revetments protecting the campground. I digitized the Nisqually River channels and channel centerlines from maps and images between 1955 and 2013 into a GIS, which I used to estimate migration rate and river width changes. Centerline migration rates average 9 ft/yr along the length of the Nisqually River study reach; at Sunshine Point lateral migration rates average 11 ft/yr. Maximum migration along the study reach was 19 ft/yr between 2006 and 2009. Greater than average migration rates and channel widths correspond to river confluences and include the Tahoma Creek confluence at Sunshine Point. To determine historical channel locations and the frequency that the river occupied different parts of its floodplain, I digitized the river from maps and images between 1903 and 2013. The Nisqually River flows through Sunshine Point Campground in eight out of 15 historical images. I assess scour at revetments protecting infrastructure from the Nisqually River during a 100-year recurrence interval flood using measured cross-sections. During a 100-year flood, the Nisqually River may scour up to 10 feet below the bed elevation. These scour depths can destabilize critical revetments leaving loose unconsolidated riverbanks exposed to Nisqually River flows. To determine the causes, locations, and frequency of flood hazards from Tahoma Creek avulsions, I field map avulsion channels and compare the results with imagery and channel width changes between 1955 and 2013. Mapped avulsion channels occur with swaths of dead vegetation or nascent vegetation; both dead and recent vegetation are visibly distinct from surrounding vegetation in aerial images. Times of changes to these vegetation anomalies correspond to increases in Tahoma Creek channel width. Avulsions have occurred at least three times in the study period: pre-1955, between 1979 and 1984, and in 2006. The 1984 and 2006 avulsions both occur after increases in Tahoma Creek reach averaged width. The NPS is considering two options to rebuild Sunshine Point Campground, both at the same location. The hazards posed by the Nisqually River and Tahoma Creek at Sunshine Point will affect both construction options equally. Migration hazards to the campground may be reduced by limiting the proposed campground infrastructure to an elevated ridge that has not been occupied by the Nisqually River since 1903. The hazards of damage from migration may be reduced by revetments, which were effective in preventing northward Nisqually River migration in 1959 and 1965. Tahoma Creek avulsions are related increased of Tahoma Creek reach averaged widths, which are near a 58- year maximum, and occurred during a 10-year flood in 1984. The campground may be as susceptible to flooding from avulsions during as little as a 10-year flood. A large avulsion may occur with the next significant Tahoma Creek width increase. Glacial retreat has been shown to increase debris flow activity and increase sediment delivery to Mount Rainier rivers. Increased sediment discharge has been correlated with aggradation, which will further encourage Tahoma Creek avulsions.
Resumo:
A specific type of natural log jam in the upper alluvial reach of the Carbon River was found to influence secondary channel avulsion, causing flooding hazards to the adjacent Carbon River Road in the northwest quadrant of Mount Rainier National Park, Washington. The fence-like natural log jam was characterized by large woody debris buttressed horizontally against standing riparian trees (i.e. ìfence railsî and ìfence postî). The objectives of this report are two-fold. First, physical characteristics and spatial distribution were documented to determine the geomorphic controls on the fence-like log jams. Second, the function and timing of the natural log jam in relation to channel avulsion was determined to provide insight into flooding hazards along the Carbon River Road. The fence-like log jams are most abundant in the upper reaches of the Carbon River between 3.0 and 5.5 kilometers from the Carbon Glacier terminus, where longitudinal gradient significantly decreases from about 0.06 to 0.03. Sediment impoundment can occur directly upstream of the fence-like log jam, creating vertical bed elevation difference as high as 1.32 meters, and can form during low magnitude, high frequency flood event (3.5-year recurrence interval). In some locations, headcuts and widening of secondary channel were observed directly to the side of the log jams, suggesting its role in facilitating secondary channel avulsions. Areas along the Carbon River Road more prone to damages from avulsion hazards were identified by coupling locations of the log jams and Relative Water Surface Elevation map created using the 1-meter 2012 Light Detection and Ranging Digital Elevation Map. Ultimately, the results of this report may provide insight to flooding hazards along the Carbon River Road from log jam-facilitated channel avulsion.
Resumo:
The southwest-facing coastal bluff present at Discovery Park, Seattle, Washington, displays distinctive joints throughout the exposed Lawton Clay Member. Exhibiting a characteristic local stratigraphy of permeable advance outwash over the impermeable proglacial lacustrine clay, this bluff is located in an area of Seattle at high risk from landslides. This project addressed the relationship between the joints observed at this coastal bluff and the coherency of the bluff as a whole, through remote sensing and field measurements. Aerial drone photography taken of the bluff was processed through a photogrammetry software to produce a 3-dimensional Structure from Motion model, allowing for a digital manipulation and broad examination of the bluff not possible by foot. Stereonet plots produced from these measurements provided insight into patterns of varying joint strike along a horizontal transect of the observed bluff face. Taken together, these two visualizations provided a better picture of the possible chicken-and-egg interaction of the joints and bluff topography; they demonstrated the likelihood that the joint formation at the bluff was most likely to be primarily influenced by the local topography of the bluff over other sources of possible tensional stress in the immediate area.
Resumo:
Actinobdella inequiannulata was found on the white sucker. Catostomus commersoni, and less frequently on the longnose sucker, Catostomus catostomus, in Algonquin Provincial Park, Ontario, Canada. Catostomus commersoni parasitized with Act. inequiannulata was collected from July to October 1973 and May to October 1974. In May and October, less than 3% of the fish carried leeches. In July, 80% of the fish were parasitized with an average of 1.5 leeches/fish. Observations on leech weight suggest that young leeches attach to fish from May to September, some mature in July, and a second generation of leeches reparasitize the fish in August and September. The mean size of leeches on suckers increased from May until July, after which the size remained relatively constant. Leeches produced characteristic lesions on the opercula of suckers. Fully developed lesions on fish opercula produced by aggregated leeches had varying amounts of central erosion, extravasation, dermal and epidermal hyperplasia, and necrosis.
Resumo:
The recreational-use value of hiking in the Bellenden Ker National Park, Australia has been estimated using a zonal travel cost model. Multiple destination visitors have been accounted for by converting visitors' own ordinal ranking of the various sites visited to numerical weights, using an expected-value approach. The value of hiking and camping in this national park was found to be $AUS 250,825 per year, or $AUS 144,45 per visitor per year, which is similar to findings from other studies valuing recreational benefits. The management of the park can use these estimates when considering the introduction of a system of user pays fees. In addition, they might be important when decisions need to be made about the allocation of resources for maintenance or upgrade of tracks and facilities.
Resumo:
We Studied microhabitat use by black-faced impala in different herd types during the rut in the cold dry seasons of 2001 and 2002 in the Etosha National Park, Namibia. We investigated whether black-faced impala select feeding sites consistently for their microhabitat characteristics in 2 vegetation types, Karstveld and Tamboti Woodland. We also investigated intra-population differences in microhabitat use between herds of different types. In both habitats, sites used by impala for feeding were more likely to be in the shade, within 2 m of the edges of wooded areas and grassy clearings, with high visibility at I m height, and with lower grass swords than nearby nonfeeding sites. In Karstveld, feeding sites of impala were also located closer to the nearest shrub than were nonfeeding sites. A degree of fine-scale sexual segregation in microhabitat use was demonstrated, but it was not consistent across habitats. Incorporating these trends in the microhabitat use of black-faced impala into management, decisions should maximize the success Of Small populations released at selected off-park sites.
Resumo:
The history of political and economic inequality in forest villages can shape how and why resource use conflicts arise during the evolution of national parks management. In the Philippine uplands, indigenous peoples and migrant settlers co-exist, compete over land and forest resources, and shape how managers preserve forests through national parks. This article examines how migrants have claimed lands and changed production and exchange relations among the indigenous Tagbanua to build on and benefit from otherwise coercive park management on Palawan Island, the Philippines. Migrant control over productive resources has influenced who, within each group, could sustain agriculture in the face of the state's dominant conservation narrative - valorizing migrant paddy rice and criminalizing Tagbanua swiddens. Upon settling, migrant farmers used new political and economic strengths to tap into provincial political networks in order to be hired at a national park. As a result, they were able to steer management to support paddy rice at the expense of swidden cultivation. While state conservation policy shapes how national parks impact upon local resource access and use, older political economic inequalities in forest villages build on such policies to influence how management affects the livelihoods of poor households.
Resumo:
Factors affecting the seasonal distribution of the vulnerable black-faced impala at Etosha National Park, Namibia and the spread of the impala in the park since their translocation there in the 1970s were studied in the hot dry season of 2000 and the wet season of 2001 in order to provide information for future translocations of this antelope. In the 30 years since their release in the park, black-faced impala appear to have dispersed a maximum of 31.5 km from their initial release sites, effectively forming five subpopulations based on their five initial release sites. The mean minimum distance that impala had dispersed between water holes since their release was 7.11 +/- 1.47 km. Black-faced impala concentrated strongly around water holes; more than 50% were within 1 km of water holes in both seasons. Changes in population densities in different habitats may have resulted from seasonal movements of impala between adjacent habitats. The role of initial release sites in determining the distribution of threatened species such as the black-faced impala is discussed in light of its importance for future translocations.