996 resultados para Ethanol electro-oxidation
Resumo:
Optical switching functionality is demonstrated in PCB integrated multimode passive polymer waveguides using a localised liquid-crystal cladding structure. Waveguide switching contrast of 15 dB is achieved with only 0.5 dB of on-state excess loss. © 2009 OSA.
Resumo:
An integrated EOM VCSELs is shown to offer high linearity (92dB/Hz2/3 at 6GHz) and by extrapolation ~90dB/Hz2/3 up to 20GHz. Successful modulation with IEEE 802.11g signals is demonstrated at 6GHz with a 12dB dynamic range. © OSA/OFC/NFOEC 2011.
Resumo:
The findings presented herein show that the electronic properties of CVD graphene on nickel can be altered from metallic to semiconducting by introducing oxygen adsorbates via UV/ozone or oxygen plasma treatment. These properties can be partially recovered by removing the oxygen adsorbates via vacuum annealing treatment. The effect of oxidation is studied by scanning tunneling microscopy/spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS). As probed by STM/STS, an energy gap opening of 0.11-0.15 eV is obtainable as the oxygen/carbon atomic ratio reaches 13-16%. The corresponding XPS spectra show a significant monotonic increase in the concentration of oxygenated functional groups due to the oxidation treatments. This study demonstrates that the opening of energy gap in CVD graphene can be reasonably controlled by a combination of UV/ozone or oxygen plasma treatment and vacuum annealing treatment. © 2013 Elsevier B.V.
Resumo:
An electro-optically (EO) modulated oxide-confined vertical-cavity surface-emitting laser (VCSEL) containing a saturable absorber in the VCSEL cavity is studied. The device contains an EO modulator section that is resonant with the VCSEL cavity. A type-II EO superlattice medium is employed in the modulator section and shown to result in a strong negative EO effect in weak electric fields. Applying the reverse bias voltages to the EO section allows triggering of short pulses in the device. Digital data transmission (return-to-zero pseudo-random bit sequence, 27-1) at 10Gb/s at bit-error-rates well below 10-9 is demonstrated. © 2014 AIP Publishing LLC.
Resumo:
The electro-absorption properties and Stark-shift of 1.3μm InGaAs quantum dot waveguide modulators are characterized under reverse bias. 2.5Gb/s data modulation is demonstrated for the first time with clear eye diagrams and error-free back-to-back performance. © 2007 Optical Society of America.
Resumo:
Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600 °C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600 °C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39mA/cm2 and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments. © 2014 AIP Publishing LLC.
Resumo:
The influence of the turbulence-chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8-21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results. © 2014 Taylor & Francis.
Resumo:
The occurrence of the microcystins in the water bodies, especially in drinking water resources, has received considerable attentions. In situ chemical oxidation is a promising cost-effective treatment method to remove MC from water body. This research investigated the reaction kinetics of the oxidation of MCRR by permanganate. Experimental results indicate that the reaction is second order overall and first order with respect to both permanganate and MCRR, and has an activation energy of 18.9 kJ/mol. The second-order rate constant ranges from 0.154 to 0.225 l/mg/min at temperature from 15 to 30 degrees C. The MCRR degradation rates can be accelerated through increasing reaction temperature and oxidant concentration. The reaction under acid conditions was slightly faster than under alkaline conditions. The half-life of the reaction was less than 1 min, and more than 99.5% of MCRR was degraded within 10 min. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A 1.55 mu m InGaAsP/InGaAsP multiple-quantum-well electro-absorption modulator (EAM) monolithically integrated with a distributed feedback laser (DFB) diode has been realized based on a novel butt-joint scheme by ultra-low metal-organic vapour phase epitaxy for the first time. The threshold current of 25 mA and an extinction ratio of more than 30 dB are obtained by using the novel structure. The beam divergence angles at the horizontal and vertical directions are as small as 19.3 degrees x 13 degrees, respectively, without a spot-size converter by undercutting the InGaAsP active region. The capacitance of the ridge waveguide device with a deep mesa buried by polyimide was reduced down to 0.30 pF.
Resumo:
A 2 x 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach-Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on silicon-on-insulator (SOI). The switch behaviour is achieved through the plasma dispersion effect of silicon. The device has a modulation arm of I mm in length and cross-section of 400 nmx340 nm. The measurement results show that the switch has a V pi L pi figure of merit of 0.145 V-cm and the extinction ratios of two output ports and cross talk are 40 dB, 28 dB and -28 dB, respectively. A 3 dB modulation bandwidth of 90 MHz and a switch time of 6.8 ns for the rise edge and 2.7 ns for the fall edge are also demonstrated.
Resumo:
This paper presents a new technique to generate microwave signal using an electro-absorption modulator (EAM) integrated with a distributed feedback (DFB) laser subject to optical injection. Experiments show that the frequency of the generated microwave can be tuned by changing the wavelength of the external laser or adjusting the bias voltage of the EAM. The frequency response of the EAM is studied and found to be unsmooth due to packaging parasitic effects and four-wave mixing effect occurring in the active layer of the DFB laser. It is also demonstrated that an EA modulator integrated in between two DFB lasers can be used instead of the EML under optical injection. This integrated chip can be used to realize a monolithically integrated tunable microwave source. (C) 2009 Optical Society of America
Resumo:
Some integrated optics devices can be made based on the interdigital electro-optic Bragg diffraction grating. The point-matching method is extended to the analysis of interdigital electro-optic Bragg diffraction gratings. This method provides a simple and fast analytic expression of the electric field in the structure. The field distributions are used to calculate the optical and electrical characteristic parameters of the gratings. The effects of finite conductor thickness have been taken into account in the analysis. It is shown that the simulation results agree well with the measured data.
Resumo:
An electro-optic variable optical attenuator in silicon-on-insulator is designed and fabricated. A series Structure is used to improve the device efficiency Compared to the attenuator in the single p-i-n diode Structure in the same modulating length, the attenuation range of the device in the series structure improves 2-3 times in the same injecting current density, while the insertion loss is not affected. The maximum dynamic attenuation of the device is greater than 30 dB. The response frequency is obtained to be about 2 MHz.
Resumo:
A novel butt-joint coupling scheme is proposed to improve the coupling efficiency for the integration of a GalnAsP MQW distributed feedback (DFB) laser with an MQW electro-absorption modulator (EAM). The proposed method gives more than 90% coupling efficiency, being much higher than the 26% coupling efficiency of the common MQW-MQW coupling technique. The differential quantum efficiency of the MQW-bulk-MQW coupled device is also much higher than that of the MQW-MQW device, 0.106 mW/mA versus 0.02 mW/mA. The EAM-DFB devices fabricated by the proposed method exhibit a very high modulation efficiency (12 dB/V) from 0 to I V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.28 pF. The experimental results demonstrate that the method can replace the conventional MQW-MQW coupling technique to fabricate high-quality integrated photonic devices. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The exponential degradation of the photoluminescence (PL) intensity at the near-band-gap was observed in heavily doped or low-quality GaN with pristine surface under continuous helium-cadmium laser excitation. In doped GaN samples, the degradation speed increased with doping concentration. The oxidation of the surface with laser irradiation was confirmed by x-ray photoemission spectroscopy measurements. The oxidation process introduced many oxygen impurities and made an increase of the surface energy band bending implied by the shift of Ga 3d binding energy. The reason for PL degradation may lie in that these defect states act as nonradiative centers and/or the increase of the surface barrier height reduces the probability of radiative recombination.