921 resultados para Energy Metabolism, Nutrition, Orthopaedics, Rehabilitation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO2 and whether capacities for compensation differ between tissues. We therefore measured activities of key mitochondrial enzymes (citrate synthase (CS), cytochrome c oxidase (COX)) from heart, red muscle, white muscle and liver in the Antarctic fish Notothenia rossii after warm- (7 °C) and hypercapnia- (0.2 kPa CO2) acclimation vs. control conditions (1 °C, 0.04 kPa CO2). In heart, enzymes showed elevated activities after cold-hypercapnia acclimation, and a warm-acclimation-induced upward shift in thermal optima. The strongest increase in enzyme activities in response to hypercapnia occurred in red muscle. In white muscle, enzyme activities were temperature-compensated. CS activity in liver decreased after warm-normocapnia acclimation (temperature-compensation), while COX activities were lower after cold- and warm-hypercapnia exposure, but increased after warm-normocapnia acclimation. In conclusion, warm-acclimated N. rossii display low thermal compensation in response to rising energy demand in highly aerobic tissues, such as heart and red muscle. Chronic environmental hypercapnia elicits increased enzyme activities in these tissues, possibly to compensate for an elevated energy demand for acid-base regulation or a compromised mitochondrial metabolism, that is predicted to occur in response to hypercapnia exposure. This might be supported by enhanced metabolisation of liver energy stores. These patterns reflect a limited capacity of N. rossii to reorganise energy metabolism in response to rising temperature and PCO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgments This project was financially supported by the US Geological Survey through a cooperative agreement with the University of Wisconsin – Madison. We are indebted to Dave and Jennifer Redell and Paul White from the Wisconsin Department of Natural Resources for collecting the animals used to complete this study and for assisting with data collection. We thank Melissa Behr for assistance with necropsies and NWHC Animal Care Staff for their help with set-up and maintenance of animals. We thank Lobke Vaanholt and Catherine Hambly (University of Aberdeen, Scotland) for their expertise and coordination in the analyses of the DLW blood samples. Funds were used for direct project costs only. Use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of benthic marine invertebrates have a complex life cycle, during which the pelagic larvae select a suitable substrate, attach to it, and then metamorphose into benthic adults. Anthropogenic ocean acidification (OA) is postulated to affect larval metamorphic success through an altered protein expression pattern (proteome structure) and post-translational modifications. To test this hypothesis, larvae of an economically and ecologically important barnacle species Balanus amphitrite, were cultured from nauplius to the cyprid stage in the present (control) and in the projected elevated concentrations of CO2 for the year 2100 (the OA treatment). Cyprid response to OA was analyzed at the total proteome level as well as two protein post-translational modification (phosphorylation and glycosylation) levels using a 2-DE based proteomic approach. The cyprid proteome showed OA-driven changes. Proteins that were differentially up or down regulated by OA come from three major groups, namely those related to energy-metabolism, respiration, and molecular chaperones, illustrating a potential strategy that the barnacle larvae may employ to tolerate OA stress. The differentially expressed proteins were tentatively identified as OA-responsive, effectively creating unique protein expression signatures for OA scenario of 2100. This study showed the promise of using a sentinel and non-model species to examine the impact of OA at the proteome level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ongoing process of ocean acidification already affects marine life and, according to the concept of oxygen- and capacity limitation of thermal tolerance (OCLTT), these effects may be exacerbated at the boarders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4°C (winter) or to 10°C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold (4°C) exposed groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55% under normocapnia to 90% under hypercapnia. We therefore excluded the 4°C groups from further experimentation. Scallops at 10°C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normo- and hypercapnia exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared to normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal's performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animals that fast during breeding and/or development, such as phocids, must regulate energy balance carefully to maximize reproductive fitness and survival probability. Adiponectin, produced by adipose tissue, contributes to metabolic regulation by modulating sensitivity to insulin, increasing fatty acid oxidation by liver and muscle, and promoting adipogenesis and lipid storage in fat tissue. We tested the hypotheses that (1) circulating adiponectin, insulin, or relative adiponectin gene expression is related to nutritional state, body mass, and mass gain in wild gray seal pups; (2) plasma adiponectin or insulin is related to maternal lactation duration, body mass, percentage milk fat, or free fatty acid (FFA) concentration; and (3) plasma adiponectin and insulin are correlated with circulating FFA in females and pups. In pups, plasma adiponectin decreased during suckling (linear mixed-effects model [LME]: T = 4.49; P < 0.001) and the early postweaning fast (LME: T = 3.39; P = 0.004). In contrast, their blubber adiponectin gene expression was higher during the early postweaning fast than early in suckling (LME: T = 2.11; P = 0.046). Insulin levels were significantly higher in early (LME: T = 3.52; P = 0.004) and late (LME: T = 6.99; P < 0.001) suckling than in fasting and, given the effect of nutritional state, were also positively related to body mass (LME: T = 3.58; P = 0.004). Adiponectin and insulin levels did not change during lactation and were unrelated to milk FFA or percentage milk fat in adult females. Our data suggest that adiponectin, in conjunction with insulin, may facilitate fat storage in seals and is likely to be particularly important in the development of blubber reserves in pups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article analyses performance consumptions among young people. The theme is explored along two main axes. The first concerns the social heterogeneity in this field, considered on two levels: the different purposes for those investments - cognitive/mental and physical performance; and the different social contexts - university and work - where performance practices and dispositions may be fostered. The second axis explores the roles of pharmacological and natural consumptions, and their interrelationship, in the dissemination of these practices. The empirical data for this analysis were drawn from an ongoing research project on performance consumptions among young people (aged 18-29 years) in Portugal, including both university students and young workers without university education. The results correspond to the stage of extensive research, for which a questionnaire was organised at a national level, using non-proportional quota sampling. On the one hand, they show that (a) there is a hierarchy of acceptance of consumptions according to their purposes, with cognitive/mental performance showing higher acceptance and (b) both pharmaceuticals and natural products are consumed for every type of performance investment. On the other, the comparison between students and workers introduces a certain heterogeneity in this general backdrop, both in terms of the purposes for their consumptions and their opting for natural or pharmacological resources. These threads of heterogeneity will prompt a discussion of the dynamics of pharmaceuticalisation within the field of performance, in particular how therapeutic cultures may be changing in terms of the way individuals relate to medications, expanding their uses in social life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of 11 marine-derived cryptides was investigated on proliferation, differentiation and maturation of human white pre-adipocytes (HWP). They were all formerly identified as potent Angiotensin-Converting-Enzyme inhibitors.Val-Trp (VW),Val-Tyr (VY), Lys-Tyr (KY), Lys-Trp (KW), Ile-Tyr (IY), Ala-Pro (AP),Val-Ile-Tyr (VIY), Leu-Lys-Pro (LKP), Gly-Pro-Leu (GPL), Ala-Lys-Lys (AKK) and Val-Ala-Pro (VAP) were previously found in fish products and coproducts as well as other marine resources like wakame. Treatment with AP, VAP and AKK greatly affected viability of HWP during the proliferation period while KW and VW treatment reduced the number of viable cells during the differentiation stage. A GPL and IY incubation during the differentiation stage allowed the decrease of their final lipid content, of the GPDH activity and of the mRNA level of adipocyte markers (aP2, GLUT4, LPL and AGT). Moreover, a down regulation of both PPARγ and C/EBPα expression, two key regulators of adipogenesis,was observed.These findings indicate that small bioactive peptides from marine protein hydrolysates can target adipogenesis and thus could regulate energy metabolism disorders

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following cultivation of distinct mesenchymal stem cell (MSC) populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O-2)) revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O-2). A simultaneous measurement of dissolved oxygen within the culture media from 4 different MSC donors ranged from 15 mu mol/L at 1.5% O-2 to 196 mu mol/L at normoxic 21% O-2. The proliferative capacity of the different hypoxic MSC populations was elevated as compared to the normoxic culture. This effect was paralleled by a significantly reduced cell damage or cell death under hypoxic conditions as evaluated by the cellular release of LDH whereby the measurement of caspase 3/7 activity revealed little if any differences in apoptotic cell death between the various cultures. The MSC culture under hypoxic conditions was associated with the induction of hypoxia-inducing factor-alpha (HIF-1 alpha) and an elevated expression of energy metabolism-associated genes including GLUT-1, LDH and PDK1. Concomitantly, a significantly enhanced glucose consumption and a corresponding lactate production could be observed in the hypoxic MSC cultures suggesting an altered metabolism of these human stem cells within the hypoxic environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apesar de ser um micronutriente essencial aos organismos, o cobre (Cu) é tóxico quando presente em elevadas concentrações na água. O mecanismo pelo qual este metal exerce sua toxicidade em invertebrados marinhos ainda não está bem estabelecido. Dentre os diversos efeitos relatados, observa-se uma redução do consumo de oxigênio corporal e tecidual no marisco Mesodesma mactroides exposto (96 h) ao Cu (150 µg L-1 ) em água do mar (salinidade 30). Portanto, o objetivo do presente estudo foi avaliar os efeitos desta exposição ao Cu no metabolismo energético em teciduais do marisco M. mactroides. Os conteúdos de ATP e coenzimas (NAD+ e NADH) nas brânquias, glândula digestiva e músculo pedal não foram alterados pela exposição ao Cu, indicando que estes tecidos mantiveram suas capacidades de produção aeróbica de energia. Porém, foi observada uma redução no conteúdo hemolinfático de ATP. Quanto ao conteúdo de proteínas, houve um aumento na glândula digestiva, que pode estar associado à maior oxidação de proteínas já relatada para esse tecido após exposição ao Cu. Os conteúdos de lipídios, glicogênio e glicose permaneceram inalterados em todos os tecidos analisados, exceto no músculo pedal, onde foi observada uma redução no conteúdo de glicose. Por isso, os conteúdos de piruvato e lactato também foram analisados no músculo pedal e na hemolinfa. Em ambos tecidos, foi observado um aumento do conteúdo de lactato, sem alteração no conteúdo de piruvato. Portanto, os resultados do presente estudo sugerem que os tecidos de M. mactroides utilizam a anaerobiose para obtenção de energia durante a exposição ao Cu, conforme demonstrado no músculo pedal e hemolinfa. Apesar disso, a hemolinfa não é capaz de manter o nível de ATP nas condições experimentais testadas. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Chromobacterium violaceum is a β-proteobacterium Gram-negative widely found in tropical and subtropical regions, whose genome was sequenced in 2003 showing great metabolic versatility and biotechnological and pharmaceutical potential. Given the large number of ORFs related to iron metabolism described in the genome of C. violaceum, the importance of this metal for various biological processes and due to lack of data about the consequences of excess of iron in free-living organisms, it is important to study the response mechanism of this bacterium in a culture filled with iron. Previous work showed that C. violaceum is resistant to high concentrations of this metal, but has not yet been described the mechanism which is used to this survival. Thus, to elucidate the response of C. violaceum cultured in high concentrations of iron and expecting to obtain candidate genes for use in bioremediation processes, this study used a shotgun proteomics approach and systems biology to assess the response of C. violaceum grown in the presence and absence of 9 mM of iron. The analysis identified 531 proteins, being 71 exclusively expressed by the bacteria grown in the presence of the metal and 100 just in the control condition. The increase in expression of proteins related to the TCA cycle possibly represents a metabolic reprogramming of the bacteria caused by high concentration of iron in the medium. Moreover, we observed an increase in the activity assay of superoxide dismutase and catalase as well as in Total Antioxidant Activity assay, suggesting that the metal is inducing oxidative stress in C. violaceum that increases the levels of violacein and antioxidant enzymes to better adapt to the emerging conditions. Are also part of the adaptive response changes in expression of proteins related to transport, including iron, as well as an increased expression of proteins related to chemotaxis response, which would lead the bacteria to change the direction of its movement away from the metal. Systems Biology results, also suggest a metabolic reprogramming with mechanisms coordinated by bottleneck proteins involved in transcription (GreA), energy metabolism (Rpe and TpiA) and methylation (AhcY)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le fer est un micronutriment important pour la croissance et le développement des plantes. Il agit comme cofacteur pour plusieurs enzymes et il est important pour des processus tels que la photosynthèse et la respiration. Souvent, le Fe dans le sol n’est pas bio-disponible pour la plante. Les plantes ont développé des stratégies pour solubiliser le Fe du sol pour le rendre disponible et assimilable pour elles. Il y a deux stratégies, la première est caractéristique des dicotylédones et la seconde est caractéristique des monocotylédones. Le modèle utilisé dans cette étude est une culture cellulaire de Solanum tuberosum. Une partie de la recherche effectuée a permis la mesure d’activité et d’expression relative de certaines enzymes impliquées dans le métabolisme énergétique et la fourniture de précurseurs pour la synthèse d’ADN : la Nucléoside diphosphate kinase, la Ribonucléotide reductase, la Glucose 6-phosphate déshydrogénase et la 6-Phosphogluconate déshydrogénase dans les cellules en présence ou en absence de Fe. Chez certains organismes, la déficience en Fe est associée à une perte de croissance qui est souvent liée à une diminution de la synthèse d’ADN. Chez les cultures de cellules de S. tuberosum, les résultats indiquent que la différence de biomasse observée entre les traitements n’est pas due à une variation de l’activité ou l’expression relative d’une de ces enzymes. En effet, aucune variation significative n’a été détectée entre les traitements (+/- Fe) pour l’activité ni l’expression relative de ces enzymes. Une autre partie de la recherche a permis d’évaluer l’activité des voies métaboliques impliquées dans la stratégie 1 utilisée par S. tuberosum. Cette stratégie consomme des métabolites énergétiques: de l’ATP pour solubiliser le Fe et du pouvoir réducteur (NAD(P)H), pour réduire le Fe3+ en Fe2+. Des études de flux métaboliques ont été faites afin d’étudier les remaniements du métabolisme carboné en déficience en Fe chez S. tuberosum. Ces études ont démontré une baisse du régime dans les différentes voies du métabolisme énergétique dans les cellules déficientes en Fe, notamment dans le flux glycolytique et le flux de C à travers la phosphoenolpyruvate carboxylase. En déficience de Fe il y aurait donc une dépression du métabolisme chez S. tuberosum qui permettrait à la cellule de ralentir son métabolisme pour maintenir sa vitalité. En plus des flux, les niveaux de pyridines nucléotides ont été mesurés puisque ceux-ci servent à réduire le Fe dans la stratégie 1. Les résultats démontrent des niveaux élevés des formes réduites de ces métabolites en déficience de Fe. L’ensemble des résultats obtenus indiquent qu’en déficience de Fe, il y a une baisse du métabolisme permettant à la cellule de s’adapter et survivre au stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le fer est un micronutriment important pour la croissance et le développement des plantes. Il agit comme cofacteur pour plusieurs enzymes et il est important pour des processus tels que la photosynthèse et la respiration. Souvent, le Fe dans le sol n’est pas bio-disponible pour la plante. Les plantes ont développé des stratégies pour solubiliser le Fe du sol pour le rendre disponible et assimilable pour elles. Il y a deux stratégies, la première est caractéristique des dicotylédones et la seconde est caractéristique des monocotylédones. Le modèle utilisé dans cette étude est une culture cellulaire de Solanum tuberosum. Une partie de la recherche effectuée a permis la mesure d’activité et d’expression relative de certaines enzymes impliquées dans le métabolisme énergétique et la fourniture de précurseurs pour la synthèse d’ADN : la Nucléoside diphosphate kinase, la Ribonucléotide reductase, la Glucose 6-phosphate déshydrogénase et la 6-Phosphogluconate déshydrogénase dans les cellules en présence ou en absence de Fe. Chez certains organismes, la déficience en Fe est associée à une perte de croissance qui est souvent liée à une diminution de la synthèse d’ADN. Chez les cultures de cellules de S. tuberosum, les résultats indiquent que la différence de biomasse observée entre les traitements n’est pas due à une variation de l’activité ou l’expression relative d’une de ces enzymes. En effet, aucune variation significative n’a été détectée entre les traitements (+/- Fe) pour l’activité ni l’expression relative de ces enzymes. Une autre partie de la recherche a permis d’évaluer l’activité des voies métaboliques impliquées dans la stratégie 1 utilisée par S. tuberosum. Cette stratégie consomme des métabolites énergétiques: de l’ATP pour solubiliser le Fe et du pouvoir réducteur (NAD(P)H), pour réduire le Fe3+ en Fe2+. Des études de flux métaboliques ont été faites afin d’étudier les remaniements du métabolisme carboné en déficience en Fe chez S. tuberosum. Ces études ont démontré une baisse du régime dans les différentes voies du métabolisme énergétique dans les cellules déficientes en Fe, notamment dans le flux glycolytique et le flux de C à travers la phosphoenolpyruvate carboxylase. En déficience de Fe il y aurait donc une dépression du métabolisme chez S. tuberosum qui permettrait à la cellule de ralentir son métabolisme pour maintenir sa vitalité. En plus des flux, les niveaux de pyridines nucléotides ont été mesurés puisque ceux-ci servent à réduire le Fe dans la stratégie 1. Les résultats démontrent des niveaux élevés des formes réduites de ces métabolites en déficience de Fe. L’ensemble des résultats obtenus indiquent qu’en déficience de Fe, il y a une baisse du métabolisme permettant à la cellule de s’adapter et survivre au stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Given the inaccessibility of indirect calorimetry, intensive care units generally use predictive equations or recommendations that are established by international societies to determine energy expenditure. The aim of the present study was to compare the energy expenditure of critically ill patients, as determined using indirect calorimetry, to the values obtained using the Harris-Benedict equation. Methods: A retrospective observational study was conducted at the Intensive Care Unit 1 of the Centro Hospitalar do Porto. The energy requirements of hospitalized critically ill patients as determined using indirect calorimetry were assessed between January 2003 and April 2012. The accuracy (± 10% difference between the measured and estimated values), the mean differences and the limits of agreement were determined for the studied equations. Results: Eighty-five patients were assessed using 288 indirect calorimetry measurements. The following energy requirement values were obtained for the different methods: 1,753.98±391.13 kcal/ day (24.48 ± 5.95 kcal/kg/day) for indirect calorimetry and 1,504.11 ± 266.99 kcal/day (20.72±2.43 kcal/kg/day) for the HarrisBenedict equation. The equation had a precision of 31.76% with a mean difference of -259.86 kcal/day and limits of agreement between -858.84 and 339.12 kcal/day. Sex (p=0.023), temperature (p=0.009) and body mass index (p< 0.001) were found to significantly affect energy expenditure Conclusion: The Harris-Benedict equation is inaccurate and tends to underestimate energy expenditure. In addition, the Harris-Benedict equation is associated with significant differences between the predicted and true energy expenditure at an individual level