923 resultados para Edifício vivo
Resumo:
Limonene is a monoterpene that has antitumoral, antibiotic and antiprotozoal activity. In this study we demonstrate the activity of limonene against Leishmania species in vitro and in vivo. Limonene killed Leishmania amazonensis promastigotes and amastigotes with 50% inhibitory concentrations of 252.0 +/- 49.0 and 147.0 +/- 46.0 mu M, respectively. Limonene was also effective against Leishmania major, Leishmania braziliensis and Leishmania chagasi promastigotes. The treatment of L. amazonensis-infected macrophages with 300 mu M limonene resulted in 78% reduction in infection rates. L. amazonensis-infected mice treated topically or intrarectally with limonene had significant reduction of lesion sizes. A significant decrease in the parasite load was shown in the lesions treated topically with limonene by histopathological examination. The intrarectal treatment was highly effective in decreasing the parasite burden, healing established lesions and suppressing the dissemination of ulcers. Limonene presents low toxicity in humans and has been shown to be effective as an agent for enhancing the percutaneous permeation of drugs. Our results suggest that limonene should be tested in different experimental models of infection by Leishmania. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
The increasing resistance of malarial parasites to almost all available drugs calls for the identification of new compounds and the detection of novel targets. Here, we establish the antimalarial activities of risedronate, one of the most potent bisphosphonates clinically used to treat bone resorption diseases, against blood stages of Plasmodium falciparum (50% inhibitory concentration [IC(50)] of 20.3 +/- 1.0 mu M). We also suggest a mechanism of action for risedronate against the intraerythrocytic stage of P. falciparum and show that protein prenylation seems to be modulated directly by this drug. Risedronate inhibits the transfer of the farnesyl pyrophosphate group to parasite proteins, an effect not observed for the transfer of geranylgeranyl pyrophosphate. Our in vivo experiments further demonstrate that risedronate leads to an 88.9% inhibition of the rodent parasite Plasmodium berghei in mice on the seventh day of treatment; however, risedronate treatment did not result in a general increase of survival rates.
Resumo:
Violacein is a violet pigment extracted from the gram-negative bacterium Chromobacterium violaceum. It presents bactericidal, tumoricidal, trypanocidal, and antileishmanial activities. We show that micromolar concentrations efficiently killed chloroquine-sensitive and -resistant Plasmodium falciparum strains in vitro; inhibited parasitemia in vivo, even after parasite establishment; and protected Plasmodium chabaudi chabaudi-infected mice from a lethal challenge.
Resumo:
We show that RsAFP2, a plant defensin that interacts with fungal glucosylceramides, is active against Candida albicans, inhibits to a lesser extent other Candida species, and is nontoxic to mammalian cells. Moreover, glucosylceramide levels in Candida species correlate with RsAFP2 sensitivity. We found RsAFP2 prophylactically effective against murine candidiasis.
Resumo:
Forty Cryptococcus gattii strains were submitted to antifungal susceptibility testing with fluconazole, itraconazole, amphotericin B and terbinafine. The minimum inhibitory concentration (MIC) ranges were 0.5-64.0 for fluconazole, < 0.015-0.25 for itraconazole, 0.015-0.5 for amphotericin B and 0.062-2.0 for terbinafine. A bioassay for the quantitation of fluconazole in murine brain tissue was developed. Swiss mice received daily injections of the antifungal, and their brains were withdrawn at different times over the 14-day study period. The drug concentrations varied from 12.98 to 44.60 mu g/mL. This assay was used to evaluate the therapy with fluconazole in a model of infection caused by C. gattii. Swiss mice were infected intracranially and treated with fluconazole for 7, 10 or 14 days. The treatment reduced the fungal burden, but an increase in fungal growth was observed on day 14. The MIC for fluconazole against sequential isolates was 16 mu g/mL, except for the isolates obtained from animals treated for 14 days (MIC = 64 mu g/mL). The quantitation of cytokines revealed a predominance of IFN-gamma and IL-12 in the non-treated group and elevation of IL-4 and IL-10 in the treated group. Our data revealed the possibility of acquired resistance during the antifungal drug therapy.
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. (Endocrinology 151: 85-95, 2010)
Resumo:
This study describes the synthesis of a new ruthenium nitrosyl complex with the formula [RuCl(2)NO(BPA)] [BPA = (2-hydroxybenzyl)(2-methylpyridyl)amine ion], which was synthesized and characterized by spectroscopy, cyclic voltammetry, X-ray crystallography, and theoretical calculation data. The biological studies of this complex included in vitro cytotoxic assays, which revealed its activity against two different tumor cell lines (HeLa and Tm5), with efficacy comparable to that of cisplatin, a metal-based drug that is administered in clinical treatment. The in vivo studies showed that [RuCl2NO(BPA)] is effective in reducing tumor mass. Also, our results suggest that the mechanism of action of [RuCl(2)NO(BPA)] includes binding to DNA, causing fragmentation of this biological molecule, which leads to apoptosis. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Background and purpose: The discovery of the pharmacological functions of nitric oxide has led to the development of NO donor compounds as therapeutic agents. A new generation of ruthenium NO donors, cis-[Ru(NO)(bpy)(2)L]X(n) , has been developed, and our aim was to show that these complexes are able to lyse Trypanosoma cruzi in vitro and in vivo. Experimental approach: NO donors were incubated with T. cruzi and their anti-T. cruzi activities evaluated as the percentage of lysed parasites compared to the negative control. In vivo, trypanocidal activity was evaluated by observing the levels of parasitaemia, survival rate and elimination of amastigotes in mouse myocardial tissue. The inhibition of GAPDH was monitored by the biochemical reduction of NAD+ to NADH. Key results: The NO donors cis-[Ru(NO)(bpy)(2)L]X(n) presented inhibitory effects on T. cruzi GAPDH (IC(50) ranging from 89 to 153 mu M). The crystal structure of the enzyme shows that the inhibitory mechanism is compatible with S-nitrosylation of the active cysteine (cys166) site. Compounds cis-[Ru(NO)(bpy)(2)imN](PF(6))(3) and cis-[Ru(NO)(bpy)(2)SO(3)]PF(6), at a dose of 385 nmol center dot kg-1, yielded survival rates of 80 and 60%, respectively, in infected mice, and eradicated any amastigotes from their myocardial tissue. Conclusions and implications: The ruthenium compounds exhibited potent in vitro and in vivo trypanocidal activities at doses up to 1000-fold lower than the clinical dose for benznidazole. Furthermore, one mechanism of action of these compounds is via the S-nitrosylation of Cys166 of T. cruzi GAPDH. Thus, these compounds show huge potential as candidates for the development of new drugs for the treatment of Chagas`s disease. This article is commented on by Machado et al., pp. 258-259 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00662.x and to view a related paper in this issue by Guedes et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00576.x.
Resumo:
The reactions of PbR(2)(OAc)(2) (R=Me, Ph) with 3-(2-thienyl)-2-sulfanylpropenoic acid (H(2)tSpa) in methanol or ethanol afforded complexes [PbR(2)(tspa)] that electrospray ionization-mass spectrometry (ESI-MS) and IR data suggest are polymeric. X-ray studies showed that [PbPh(2)(tspa)(dmso)] center dot dmso, crystallized from a solution of [PbPh(2)(tspa)] in dmso, is dimeric, and that [HQ](2)[PbPh(2)(tspa)(2)] (Q=diisopropylamine), obtained after removal of [PbPh(2)(tspa)] from a reaction including Q, contains the monomeric anion [PbPh(2)(tSpa)(2)](2-). In the solid state the lead atoms are O,S-chelated by the tspa ligands in all these products, and in the latter two have distorted octahedral coordination environments. NMR data suggest that tspa(2-) remains coordinated to PbR(2)(2+) in solution in dmso. Neither thiamine nor thiamine diphosphate reacted with PbMe(2)(NO(3))(2) in D(2)O. Prior addition of H(2)tSpa protected LLC center dot PK1 renal proximal tubule cells against PbMe(2)(NO(3))(2); thiamine had no statistically significant effect by itself, but greatly potentiated the action of H(2)tSpa. Administration of either H(2)tspa or thiamine to male albino Sprague-Dawley rats dosed 30 min previously with PbMe(2)(NO(3))(2) was associated with reduced inhibition of delta-ALAD by the organolead compound, and with lower lead levels in kidney and brain, but joint administration of both H(2)tspa and thiamine only lowered lead concentration in the kidney.
Resumo:
The interactions between three different protein antigens and dioctadecyldimethylammonium bromide (DODAB) dispersed in aqueous solutions from probe sonication or adsorbed its one bilayer onto particles was comparatively investigated. The three model proteins were bovine serum albumin (BSA), purified 18 kDa/14 kDa antigens from Taenia crassiceps (18/14-Tcra) and a recombinant, heat-shock protein hsp-18 kDa from Mycobacterium leprae. Protein-DODAB complexes in water solution were characterized by dynamic light scattering for sizing and zeta-potential analysis. Cationic complexes (80-100 nm of mean hydrodynamic diameter) displayed sizes similar to those of DODAB bilayer fragments (BF) in aqueous solution and good colloid stability over a range of DODAB and protein concentrations. The amount of cationic lipid required for attaining zero of zeta-potential at a given protein amount depended on protein nature being smaller for 18 kDa/14 kDa antigens than for BSA. Mean diameters for DODAB/protein complexes increased, whereas zeta-potentials decreased with NaCl or protein concentration. In mice, weak IgG production but significant cellular immune responses were induced by the complexes in comparison to antigens alone or carried by aluminum hydroxide as shown from IgG in serum determined by ELISA, delayed type hypersensitivity reaction from footpad swelling tests and cytokines analysis. The novel cationic adjuvant/protein complexes revealed good colloid stability and potential for vaccine design at a reduced DODAB concentration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) has long been known to protect experimental animals from the injury associated with oxidative and inflammatory conditions. In the latter case, a parallel decrease in tissue protein nitration levels has been observed. Protein nitration represents a shift in nitric oxide actions from physiological to pathophysiological and potentially damaging pathways involving its derived oxidants such as nitrogen dioxide and peroxynitrite. In infectious diseases, protein tyrosine nitration of tissues and cells has been taken as evidence for the involvement of nitric oxide-derived oxidants in microbicidal mechanisms. To examine whether tempol inhibits the microbicidal action of macrophages, we investigated its effects on Leishmania amazonensis infection in vitro (RAW 264.7 murine macrophages) and in vivo (C57B1/6 mice). Tempol was administered in the drinking water at 2 mM throughout the experiments and shown to reach infected footpads as the nitroxide plus the hydroxylamine derivative by EPR analysis. At the time of maximum infection (6 weeks), tempol increased footpad lesion size (120%) and parasite burden (150%). In lesion extracts, tempol decreased overall nitric oxide products and expression of inducible nitric oxide synthase to about 80% of the levels in control animals. Nitric oxide-derived products produced by radical mechanisms, such as 3-nitrotyrosine and nitrosothiol, decreased to about 40% of the levels in control mice. The results indicate that tempol worsened L. amazonensis infection by a dual mechanism involving down-regulation of iNOS expression and scavenging of nitric oxide-derived oxidants. Thus, the development of therapeutic strategies based on nitroxides should take into account the potential risk of altering host resistance to parasite infection. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Trypanosoma cruzi is a protozoan parasite that infects vertebrates, causing in humans a pathological condition known as Chagas` disease. The infection of host cells by T. cruzi involves a vast collection of molecules, including a family of 85 kDa GPI-anchored glycoproteins belonging to the gp85/trans-sialidase superfamily, which contains a conserved cell-binding sequence (VTVXNVFLYNR) known as FLY, for short. Herein, it is shown that BALB/c mice administered with a single dose (1 mu g/animal, intraperitoneally) of FLY-synthetic peptide are more susceptible to infection by T. cruzi, with increased systemic parasitaemia (2-fold) and mortality. Higher tissue parasitism was observed in bladder (7.6-fold), heart (3-fold) and small intestine (3.6-fold). Moreover, an intense inflammatory response and increment of CD4(+) T cells (1.7-fold) were detected in the heart of FLY-primed and infected animals, with a 5-fold relative increase of CD4(+)CD25(+)FoxP3(+) T (Treg) cells. Mice treated with anti-CD25 antibodies prior to infection, showed a decrease in parasitaemia in the FLY model employed. In conclusion, the results suggest that FLY facilitates in vivo infection by T. cruzi and concurs with other factors to improve parasite survival to such an extent that might influence the progression of pathology in Chagas` disease.
Resumo:
Objectives The chemoprotective effect of the tetrahydrofuran lignan grandisin against DNA damage induced by cyclophosphamide (200 mg/kg) has been evaluated using the in vitro rodent micronucleus assay. Methods The effects of a daily oral administration of grandisin (2, 4, or 8 mg/kg) for five days before exposure to cyclophosphamide on the frequency of micronucleus in the bone marrow of normal mice exposed and unexposed to cyclophosphamide were investigated (n = 5 per group). Electrochemical measurements were applied to investigate whether the antimutagenic effects of grandisin could be, at least in part, a consequence of its or its metabolite`s antioxidant properties. Key findings Grandisin did not show mutagenic effects on the bone marrow cells of exposed mice. On the other hand, the oral administration of grandisin (2, 4, or 8 mg/kg) per day reduced dose-dependently the frequency of micronucleus, induced by cyclophosphamide, in all groups studied. Cyclic voltammograms showed two peaks for a grandisin metabolite, which were absent for grandisin. Conclusions Under the conditions tested herein, this study has shown that mice treated with grandisin presented, in a dose-dependent manner, a protective effect against cyclophosphamide-induced mutagenicity. This effect could be, at least in part, associated to grandisin bioactivation. These data open new perspectives for further investigation into the toxicology and applied pharmacology of grandisin.
Resumo:
O objetivo do presente estudo foi comparar os diagnósticos de lesões de cárie oclusal de molares decíduos obtidos in vivo e in vitro, a partir da inspeção visual associada à radiografia interproximal e avaliar in vivo e in vitro a efetividade destes exames para a detecção de lesões de cárie na superfície oclusal de molares decíduos. A amostra foi constituída de 52 molares decíduos superiores e inferiores. Os pacientes foram radiografados com posicionadores que possuíam os registros das mordidas em acrílico dos dentes posteriores aos dentes que seriam examinados. Moldagens dos hemiarcos foram obtidas com silicona de adição. O exame visual associado ao radiográfico da superfície oclusal dos molares decíduos foi realizado. Os dentes foram extraídos e posicionados nas moldagens para obtenção de modelos de gesso simulando as condições in vivo. Os posicionadores com as mordidas em acrílico foram novamente utilizados para as radiografias in vitro. O exame clínico associado ao radiográfico foi repetido in vitro pelo mesmo examinador, depois de em média 120 dias. Os dentes foram avaliados no estereomicroscópio para a obtenção dos diagnósticos definitivos. Através do teste de Wilcoxon, não foram observadas diferenças estatisticamente significantes entre os exames in vivo e in vitro (p = 0,356). Nas análises de todas as lesões, a sensibilidade foi de 0,95 in vivo e in vitro e a especificidade foi de 0,75 in vivo e 1 in vitro. Quando apenas as lesões em dentina foram validadas, a sensibilidade foi de 0,80 in vivo e in vitro e a especificidade foi de 0,77 in vivo e 0,83 in vitro. Assim, os resultados confirmam que os estudos de diagnóstico de cárie em condições laboratoriais são viáveis e possuem aplicabilidade clínica. Os exames associados foram considerados efetivos na detecção de lesões de cárie na superfície oclusal de molares decíduos in vivo e in vitro.
Resumo:
Esta dissertação estuda a arquitetura teatral sob o aspecto da relação existente entre o palco e a platéia como fator determinante e conseqüente da configuração do espaço arquitetônico. Aborda a evolução tipológica dos teatros no mundo ocidental, com ênfase nas configurações do edifício como suporte para a encenação teatral, a partir de exemplos significativos de cada período. Estabelece ligação entre a produção dramática e a participação do espaço arquitetônico como facilitador do processo de percepção, considerando as propriedades geométricas do palco e sua interface com a audiência. Discute os aspectos cenotécnicos, acústicos e óticos como impositivos instrumentais de projeto do edifício teatral e suas conseqüências no resultado edificado. Gera um ponto de partida para a fundamentação teórica necessária ao desenvolvimento de projetos de teatros, em especial nas relações morfológicas entre o espaço do ator e o do público.