952 resultados para Eddy covariance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis studies three classes of randomized numerical linear algebra algorithms, namely: (i) randomized matrix sparsification algorithms, (ii) low-rank approximation algorithms that use randomized unitary transformations, and (iii) low-rank approximation algorithms for positive-semidefinite (PSD) matrices.

Randomized matrix sparsification algorithms set randomly chosen entries of the input matrix to zero. When the approximant is substituted for the original matrix in computations, its sparsity allows one to employ faster sparsity-exploiting algorithms. This thesis contributes bounds on the approximation error of nonuniform randomized sparsification schemes, measured in the spectral norm and two NP-hard norms that are of interest in computational graph theory and subset selection applications.

Low-rank approximations based on randomized unitary transformations have several desirable properties: they have low communication costs, are amenable to parallel implementation, and exploit the existence of fast transform algorithms. This thesis investigates the tradeoff between the accuracy and cost of generating such approximations. State-of-the-art spectral and Frobenius-norm error bounds are provided.

The last class of algorithms considered are SPSD "sketching" algorithms. Such sketches can be computed faster than approximations based on projecting onto mixtures of the columns of the matrix. The performance of several such sketching schemes is empirically evaluated using a suite of canonical matrices drawn from machine learning and data analysis applications, and a framework is developed for establishing theoretical error bounds.

In addition to studying these algorithms, this thesis extends the Matrix Laplace Transform framework to derive Chernoff and Bernstein inequalities that apply to all the eigenvalues of certain classes of random matrices. These inequalities are used to investigate the behavior of the singular values of a matrix under random sampling, and to derive convergence rates for each individual eigenvalue of a sample covariance matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine stratocumulus clouds are generally optically thick and shallow, exerting a net cooling influence on climate. Changes in atmospheric aerosol levels alter cloud microphysics (e.g., droplet size) and cloud macrophysics (e.g., liquid water path, cloud thickness), thereby affecting cloud albedo and Earth’s radiative balance. To understand the aerosol-cloud-precipitation interactions and to explore the dynamical effects, three-dimensional large-eddy simulations (LES) with detailed bin-resolved microphysics are performed to explore the diurnal variation of marine stratocumulus clouds under different aerosol levels and environmental conditions. It is shown that the marine stratocumulus cloud albedo is sensitive to aerosol perturbation under clean background conditions, and to environmental conditions such as large-scale divergence rate and free tropospheric humidity.

Based on the in-situ Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) during Jul. and Aug. 2011, and A-Train satellite observation of 589 individual ship tracks during Jun. 2006-Dec. 2009, an analysis of cloud albedo responses in ship tracks is presented. It is found that the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. Under closed cell structure (i.e., cloud cells ringed by a perimeter of clear air), with sufficiently dry air above cloud tops and/or higher cloud top heights, the cloud albedo can become lower in ship tracks. Based on the satellite data, nearly 25% of ship tracks exhibited a decreased albedo. The cloud macrophysical responses are crucial in determining both the strength and the sign of the cloud albedo response to aerosols.

To understand the aerosol indirect effects on global marine warm clouds, multisensory satellite observations, including CloudSat, MODIS, CALIPSO, AMSR-E, ECMWF, CERES, and NCEP, have been applied to study the sensitivity of cloud properties to aerosol levels and to large scale environmental conditions. With an estimate of anthropogenic aerosol fraction, the global aerosol indirect radiative forcing has been assessed.

As the coupling among aerosol, cloud, precipitation, and meteorological conditions in the marine boundary layer is complex, the integration of LES modeling, in-situ aircraft measurements, and global multisensory satellite data analyses improves our understanding of this complex system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a simplified state-variable method to solve for the nonstationary response of linear MDOF systems subjected to a modulated stationary excitation in both time and frequency domains. The resulting covariance matrix and evolutionary spectral density matrix of the response may be expressed as a product of a constant system matrix and a time-dependent matrix, the latter can be explicitly evaluated for most envelopes currently prevailing in engineering. The stationary correlation matrix of the response may be found by taking the limit of the covariance response when a unit step envelope is used. The reliability analysis can then be performed based on the first two moments of the response obtained.

The method presented facilitates obtaining explicit solutions for general linear MDOF systems and is flexible enough to be applied to different stochastic models of excitation such as the stationary models, modulated stationary models, filtered stationary models, and filtered modulated stationary models and their stochastic equivalents including the random pulse train model, filtered shot noise, and some ARMA models in earthquake engineering. This approach may also be readily incorporated into finite element codes for random vibration analysis of linear structures.

A set of explicit solutions for the response of simple linear structures subjected to modulated white noise earthquake models with four different envelopes are presented as illustration. In addition, the method has been applied to three selected topics of interest in earthquake engineering, namely, nonstationary analysis of primary-secondary systems with classical or nonclassical dampings, soil layer response and related structural reliability analysis, and the effect of the vertical components on seismic performance of structures. For all the three cases, explicit solutions are obtained, dynamic characteristics of structures are investigated, and some suggestions are given for aseismic design of structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation studies long-term behavior of random Riccati recursions and mathematical epidemic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati recursions are well-studied by researchers. We focus on time-varying case, and assume that regressor matrix is random and identical and independently distributed according to given distribution whose probability distribution function is continuous, supported on whole space, and decaying faster than any polynomial. We study the geometric convergence of the probability distribution. We also study the global dynamics of the epidemic spread over complex networks for various models. For instance, in the discrete-time Markov chain model, each node is either healthy or infected at any given time. In this setting, the number of the state increases exponentially as the size of the network increases. The Markov chain has a unique stationary distribution where all the nodes are healthy with probability 1. Since the probability distribution of Markov chain defined on finite state converges to the stationary distribution, this Markov chain model concludes that epidemic disease dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic model whose state at any given time is the vector obtained from the marginal probability of infection of each node in the network at that time. Convergence to the origin in the epidemic map implies the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper bound is unstable. We work on stability analysis of the second fixed point for both discrete-time and continuous-time models. Returning back to the Markov chain model, we claim that the stability of linear upper bound for nonlinear model is strongly related with the extinction time of the Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and the probability of survival is bounded by nonlinear epidemic map.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progress is made on the numerical modeling of both laminar and turbulent non-premixed flames. Instead of solving the transport equations for the numerous species involved in the combustion process, the present study proposes reduced-order combustion models based on local flame structures.

For laminar non-premixed flames, curvature and multi-dimensional diffusion effects are found critical for the accurate prediction of sooting tendencies. A new numerical model based on modified flamelet equations is proposed. Sooting tendencies are calculated numerically using the proposed model for a wide range of species. These first numerically-computed sooting tendencies are in good agreement with experimental data. To further quantify curvature and multi-dimensional effects, a general flamelet formulation is derived mathematically. A budget analysis of the general flamelet equations is performed on an axisymmetric laminar diffusion flame. A new chemistry tabulation method based on the general flamelet formulation is proposed. This new tabulation method is applied to the same flame and demonstrates significant improvement compared to previous techniques.

For turbulent non-premixed flames, a new model to account for chemistry-turbulence interactions is proposed. %It is found that these interactions are not important for radicals and small species, but substantial for aromatic species. The validity of various existing flamelet-based chemistry tabulation methods is examined, and a new linear relaxation model is proposed for aromatic species. The proposed relaxation model is validated against full chemistry calculations. To further quantify the importance of aromatic chemistry-turbulence interactions, Large-Eddy Simulations (LES) have been performed on a turbulent sooting jet flame. %The aforementioned relaxation model is used to provide closure for the chemical source terms of transported aromatic species. The effects of turbulent unsteadiness on soot are highlighted by comparing the LES results with a separate LES using fully-tabulated chemistry. It is shown that turbulent unsteady effects are of critical importance for the accurate prediction of not only the inception locations, but also the magnitude and fluctuations of soot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general review of stochastic processes is given in the introduction; definitions, properties and a rough classification are presented together with the position and scope of the author's work as it fits into the general scheme.

The first section presents a brief summary of the pertinent analytical properties of continuous stochastic processes and their probability-theoretic foundations which are used in the sequel.

The remaining two sections (II and III), comprising the body of the work, are the author's contribution to the theory. It turns out that a very inclusive class of continuous stochastic processes are characterized by a fundamental partial differential equation and its adjoint (the Fokker-Planck equations). The coefficients appearing in those equations assimilate, in a most concise way, all the salient properties of the process, freed from boundary value considerations. The writer’s work consists in characterizing the processes through these coefficients without recourse to solving the partial differential equations.

First, a class of coefficients leading to a unique, continuous process is presented, and several facts are proven to show why this class is restricted. Then, in terms of the coefficients, the unconditional statistics are deduced, these being the mean, variance and covariance. The most general class of coefficients leading to the Gaussian distribution is deduced, and a complete characterization of these processes is presented. By specializing the coefficients, all the known stochastic processes may be readily studied, and some examples of these are presented; viz. the Einstein process, Bachelier process, Ornstein-Uhlenbeck process, etc. The calculations are effectively reduced down to ordinary first order differential equations, and in addition to giving a comprehensive characterization, the derivations are materially simplified over the solution to the original partial differential equations.

In the last section the properties of the integral process are presented. After an expository section on the definition, meaning, and importance of the integral process, a particular example is carried through starting from basic definition. This illustrates the fundamental properties, and an inherent paradox. Next the basic coefficients of the integral process are studied in terms of the original coefficients, and the integral process is uniquely characterized. It is shown that the integral process, with a slight modification, is a continuous Markoff process.

The elementary statistics of the integral process are deduced: means, variances, and covariances, in terms of the original coefficients. It is shown that an integral process is never temporally homogeneous in a non-degenerate process.

Finally, in terms of the original class of admissible coefficients, the statistics of the integral process are explicitly presented, and the integral process of all known continuous processes are specified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been well-established that interfaces in crystalline materials are key players in the mechanics of a variety of mesoscopic processes such as solidification, recrystallization, grain boundary migration, and severe plastic deformation. In particular, interfaces with complex morphologies have been observed to play a crucial role in many micromechanical phenomena such as grain boundary migration, stability, and twinning. Interfaces are a unique type of material defect in that they demonstrate a breadth of behavior and characteristics eluding simplified descriptions. Indeed, modeling the complex and diverse behavior of interfaces is still an active area of research, and to the author's knowledge there are as yet no predictive models for the energy and morphology of interfaces with arbitrary character. The aim of this thesis is to develop a novel model for interface energy and morphology that i) provides accurate results (especially regarding "energy cusp" locations) for interfaces with arbitrary character, ii) depends on a small set of material parameters, and iii) is fast enough to incorporate into large scale simulations.

In the first half of the work, a model for planar, immiscible grain boundary is formulated. By building on the assumption that anisotropic grain boundary energetics are dominated by geometry and crystallography, a construction on lattice density functions (referred to as "covariance") is introduced that provides a geometric measure of the order of an interface. Covariance forms the basis for a fully general model of the energy of a planar interface, and it is demonstrated by comparison with a wide selection of molecular dynamics energy data for FCC and BCC tilt and twist boundaries that the model accurately reproduces the energy landscape using only three material parameters. It is observed that the planar constraint on the model is, in some cases, over-restrictive; this motivates an extension of the model.

In the second half of the work, the theory of faceting in interfaces is developed and applied to the planar interface model for grain boundaries. Building on previous work in mathematics and materials science, an algorithm is formulated that returns the minimal possible energy attainable by relaxation and the corresponding relaxed morphology for a given planar energy model. It is shown that the relaxation significantly improves the energy results of the planar covariance model for FCC and BCC tilt and twist boundaries. The ability of the model to accurately predict faceting patterns is demonstrated by comparison to molecular dynamics energy data and experimental morphological observation for asymmetric tilt grain boundaries. It is also demonstrated that by varying the temperature in the planar covariance model, it is possible to reproduce a priori the experimentally observed effects of temperature on facet formation.

Finally, the range and scope of the covariance and relaxation models, having been demonstrated by means of extensive MD and experimental comparison, future applications and implementations of the model are explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on improving the simulation skills and the theoretical understanding of the subtropical low cloud response to climate change.

First, an energetically consistent forcing framework is designed and implemented for the large eddy simulation (LES) of the low-cloud response to climate change. The three representative current-day subtropical low cloud regimes of cumulus (Cu), cumulus-over-stratocumulus, and stratocumulus (Sc) are all well simulated with this framework, and results are comparable to the conventional fixed-SST approach. However, the cumulus response to climate warming subject to energetic constraints differs significantly from the conventional approach with fixed SST. Under the energetic constraint, the subtropics warm less than the tropics, since longwave (LW) cooling is more efficient with the drier subtropical free troposphere. The surface latent heat flux (LHF) also increases only weakly subject to the surface energetic constraint. Both factors contribute to an increased estimated inversion strength (EIS), and decreased inversion height. The decreased Cu-depth contributes to a decrease of liquid water path (LWP) and weak positive cloud feedback. The conventional fixed-SST approach instead simulates a strong increase in LHF and deepening of the Cu layer, leading to a weakly negative cloud feedback. This illustrates the importance of energetic constraints to the simulation and understanding of the sign and magnitude of low-cloud feedback.

Second, an extended eddy-diffusivity mass-flux (EDMF) closure for the unified representation of sub-grid scale (SGS) turbulence and convection processes in general circulation models (GCM) is presented. The inclusion of prognostic terms and the elimination of the infinitesimal updraft fraction assumption makes it more flexible for implementation in models across different scales. This framework can be consistently extended to formulate multiple updrafts and downdrafts, as well as variances and covariances. It has been verified with LES in different boundary layer regimes in the current climate, and further development and implementation of this closure may help to improve our simulation skills and understanding of low-cloud feedback through GCMs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis aims at enhancing our fundamental understanding of the East Asian summer monsoon (EASM), and mechanisms implicated in its climatology in present-day and warmer climates. We focus on the most prominent feature of the EASM, i.e., the so-called Meiyu-Baiu (MB), which is characterized by a well-defined, southwest to northeast elongated quasi-stationary rainfall band, spanning from eastern China to Japan and into the northwestern Pacific Ocean in June and July.

We begin with an observational study of the energetics of the MB front in present-day climate. Analyses of the moist static energy (MSE) budget of the MB front indicate that horizontal advection of moist enthalpy, primarily of dry enthalpy, sustains the front in a region of otherwise negative net energy input into the atmospheric column. A decomposition of the horizontal dry enthalpy advection into mean, transient, and stationary eddy fluxes identifies the longitudinal thermal gradient due to zonal asymmetries and the meridional stationary eddy velocity as the most influential factors determining the pattern of horizontal moist enthalpy advection. Numerical simulations in which the Tibetan Plateau (TP) is either retained or removed show that the TP influences the stationary enthalpy flux, and hence the MB front, primarily by changing the meridional stationary eddy velocity, with reinforced southerly wind on the northwestern flank of the north Pacific subtropical high (NPSH) over the MB region and northerly wind to its north. Changes in the longitudinal thermal gradient are mainly confined to the near downstream of the TP, with the resulting changes in zonal warm air advection having a lesser impact on the rainfall in the extended MB region.

Similar mechanisms are shown to be implicated in present climate simulations in the Couple Model Intercomparison Project - Phase 5 (CMIP5) models. We find that the spatial distribution of the EASM precipitation simulated by different models is highly correlated with the meridional stationary eddy velocity. The correlation becomes more robust when energy fluxes into the atmospheric column are considered, consistent with the observational analyses. The spread in the area-averaged rainfall amount can be partially explained by the spread in the simulated globally-averaged precipitation, with the rest primarily due to the lower-level meridional wind convergence. Clear relationships between precipitation and zonal and meridional eddy velocities are observed.

Finally, the response of the EASM to greenhouse gas forcing is investigated at different time scales in CMIP5 model simulations. The reduction of radiative cooling and the increase in continental surface temperature occur much more rapidly than changes in sea surface temperatures (SSTs). Without changes in SSTs, the rainfall in the monsoon region decreases (increases) over ocean (land) in most models. On longer time scales, as SSTs increase, rainfall changes are opposite. The total response to atmospheric CO^2 forcing and subsequent SST warming is a large (modest) increase in rainfall over ocean (land) in the EASM region. Dynamic changes, in spite of significant contributions from the thermodynamic component, play an important role in setting up the spatial pattern of precipitation changes. Rainfall anomalies over East China are a direct consequence of local land-sea contrast, while changes in the larger-scale oceanic rainfall band are closely associated with the displacement of the larger-scale NPSH. Numerical simulations show that topography and SST patterns play an important role in rainfall changes in the EASM region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nesta dissertação, foi utilizada a técnica SIFT (Scale Invariant Feature Transform) para o reconhecimento de imagens da área dos olhos (região periorbital). Foi implementada uma classificação das imagens em subgrupos internos ao banco de dados, utilizando-se das informações estatísticas provenientes dos padrões invariantes produzidos pela técnica SIFT. Procedeu-se a uma busca categorizada pelo banco de dados, ao invés da procura de um determinado padrão apresentado, através da comparação deste com cada padrão presente no banco de dados. A tais padrões foi aplicada uma abordagem estatística, através da geração da matriz de covariâncias dos padrões gerados, sendo esta utilizada para a categorização, tendo por base uma rede neural híbrida. A rede neural classifica e categoriza o banco de dados de imagens, criando uma topologia de busca. Foram obtidos resultados corretos de classificação de 76,3% pela rede neural híbrida, sendo que um algoritmo auxiliar determina uma hierarquia de busca, onde, ocorrendo uma errônea classificação, a busca segue em grupos de pesquisas mais prováveis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was made of the means by which turbulent flows entrain sediment grains from alluvial stream beds. Entrainment was considered to include both the initiation of sediment motion and the suspension of grains by the flow. Observations of grain motion induced by turbulent flows led to the formulation of an entrainment hypothesis. It was based on the concept of turbulent eddies disrupting the viscous sublayer and impinging directly onto the grain surface. It is suggested that entrainment results from the interaction between fluid elements within an eddy and the sediment grains.

A pulsating jet was used to simulate the flow conditions in a turbulent boundary layer. Evidence is presented to establish the validity of this representation. Experiments were made to determine the dependence of jet strength, defined below, upon sediment and fluid properties. For a given sediment and fluid, and fixed jet geometry there were two critical values of jet strength: one at which grains started to roll across the bed, and one at which grains were projected up from the bed. The jet strength K, is a function of the pulse frequency, ω, and the pulse amplitude, A, defined by

K = Aω-s

Where s is the slope of a plot of log A against log ω. Pulse amplitude is equal to the volume of fluid ejected at each pulse divided by the cross sectional area of the jet tube.

Dimensional analysis was used to determine the parameters by which the data from the experiments could be correlated. Based on this, a method was devised for computing the pulse amplitude and frequency necessary either to move or project grains from the bed for any specified fluid and sediment combination.

Experiments made in a laboratory flume with a turbulent flow over a sediment bed are described. Dye injection was used to show the presence, in a turbulent boundary layer, of two important aspects of the pulsating jet model and the impinging eddy hypothesis. These were the intermittent nature of the sublayer and the presence of velocities with vertical components adjacent to the sediment bed.

A discussion of flow conditions, and the resultant grain motion, that occurred over sediment beds of different form is given. The observed effects of the sediment and fluid interaction are explained, in each case, in terms of the entrainment hypothesis.

The study does not suggest that the proposed entrainment mechanism is the only one by which grains can be entrained. However, in the writer’s opinion, the evidence presented strongly suggests that the impingement of turbulent eddies onto a sediment bed plays a dominant role in the process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feedback coding problem for Gaussian systems in which the noise is neither white nor statistically independent between channels is formulated in terms of arbitrary linear codes at the transmitter and at the receiver. This new formulation is used to determine a number of feedback communication systems. In particular, the optimum linear code that satisfies an average power constraint on the transmitted signals is derived for a system with noiseless feedback and forward noise of arbitrary covariance. The noisy feedback problem is considered and signal sets for the forward and feedback channels are obtained with an average power constraint on each. The general formulation and results are valid for non-Gaussian systems in which the second order statistics are known, the results being applicable to the determination of error bounds via the Chebychev inequality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jet noise reduction is an important goal within both commercial and military aviation. Although large-scale numerical simulations are now able to simultaneously compute turbulent jets and their radiated sound, lost-cost, physically-motivated models are needed to guide noise-reduction efforts. A particularly promising modeling approach centers around certain large-scale coherent structures, called wavepackets, that are observed in jets and their radiated sound. The typical approach to modeling wavepackets is to approximate them as linear modal solutions of the Euler or Navier-Stokes equations linearized about the long-time mean of the turbulent flow field. The near-field wavepackets obtained from these models show compelling agreement with those educed from experimental and simulation data for both subsonic and supersonic jets, but the acoustic radiation is severely under-predicted in the subsonic case. This thesis contributes to two aspects of these models. First, two new solution methods are developed that can be used to efficiently compute wavepackets and their acoustic radiation, reducing the computational cost of the model by more than an order of magnitude. The new techniques are spatial integration methods and constitute a well-posed, convergent alternative to the frequently used parabolized stability equations. Using concepts related to well-posed boundary conditions, the methods are formulated for general hyperbolic equations and thus have potential applications in many fields of physics and engineering. Second, the nonlinear and stochastic forcing of wavepackets is investigated with the goal of identifying and characterizing the missing dynamics responsible for the under-prediction of acoustic radiation by linear wavepacket models for subsonic jets. Specifically, we use ensembles of large-eddy-simulation flow and force data along with two data decomposition techniques to educe the actual nonlinear forcing experienced by wavepackets in a Mach 0.9 turbulent jet. Modes with high energy are extracted using proper orthogonal decomposition, while high gain modes are identified using a novel technique called empirical resolvent-mode decomposition. In contrast to the flow and acoustic fields, the forcing field is characterized by a lack of energetic coherent structures. Furthermore, the structures that do exist are largely uncorrelated with the acoustic field. Instead, the forces that most efficiently excite an acoustic response appear to take the form of random turbulent fluctuations, implying that direct feedback from nonlinear interactions amongst wavepackets is not an essential noise source mechanism. This suggests that the essential ingredients of sound generation in high Reynolds number jets are contained within the linearized Navier-Stokes operator rather than in the nonlinear forcing terms, a conclusion that has important implications for jet noise modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis advances our physical understanding of the sensitivity of the hydrological cycle to global warming. Specifically, it focuses on changes in the longitudinal (zonal) variation of precipitation minus evaporation (P - E), which is predominantly controlled by planetary-scale stationary eddies. By studying idealized general circulation model (GCM) experiments with zonally varying boundary conditions, this thesis examines the mechanisms controlling the strength of stationary-eddy circulations and their role in the hydrological cycle. The overarching goal of this research is to understand the cause of changes in regional P - E with global warming. An understanding of such changes can be useful for impact studies focusing on water availability, ecosystem management, and flood risk.

Based on a moisture-budget analysis of ERA-Interim data, we establish an approximation for zonally anomalous P - E in terms of surface moisture content and stationary-eddy vertical motion in the lower troposphere. Part of the success of this approximation comes from our finding that transient-eddy moisture fluxes partially cancel the effect of stationary-eddy moisture advection, allowing divergent circulations to dominate the moisture budget. The lower-tropospheric vertical motion is related to horizontal motion in stationary eddies by Sverdrup and Ekman balance. These moisture- and vorticity-budget balances also hold in idealized and comprehensive GCM simulations across a range of climates.

By examining climate changes in the idealized and comprehensive GCM simulations, we are able to show the utility of the vertical motion P - E approximation for splitting changes in zonally anomalous P - E into thermodynamic and dynamic components. Shifts in divergent stationary-eddy circulations dominate changes in zonally anomalous P - E. This limits the local utility of the "wet gets wetter, dry gets drier” idea, where existing P - E patterns are amplified with warming by the increase in atmospheric moisture content, with atmospheric circulations held fixed. The increase in atmospheric moisture content manifests instead in an increase in the amplitude of the zonally anomalous hydrological cycle as measured by the zonal variance of P - E. However, dynamic changes, particularly the slowdown of divergent stationary-eddy circulations, limit the strengthening of the zonally anomalous hydrological cycle. In certain idealized cases, dynamic changes are even strong enough to reverse the tendency towards "wet gets wetter, dry gets drier” with warming.

Motivated by the importance of stationary-eddy vertical velocities in the moisture budget analysis, we examine controls on the amplitude of stationary eddies across a wide range of climates in an idealized GCM with simple topographic and ocean-heating zonal asymmetries. An analysis of the thermodynamic equation in the vicinity of topographic forcing reveals the importance of on-slope surface winds, the midlatitude isentropic slope, and latent heating in setting the amplitude of stationary waves. The response of stationary eddies to climate change is determined primarily by the strength of zonal surface winds hitting the mountain. The sensitivity of stationary-eddies to this surface forcing increases with climate change as the slope of midlatitude isentropes decreases. However, latent heating also plays an important role in damping the stationary-eddy response, and this damping becomes stronger with warming as the atmospheric moisture content increases. We find that the response of tropical overturning circulations forced by ocean heat-flux convergence is described by changes in the vertical structure of moist static energy and deep convection. This is used to derive simple scalings for the Walker circulation strength that capture the monotonic decrease with warming found in our idealized simulations.

Through the work of this thesis, the advances made in understanding the amplitude of stationary-waves in a changing climate can be directly applied to better understand and predict changes in the zonally anomalous hydrological cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this thesis is to characterize the behavior of the smallest turbulent scales in high Karlovitz number (Ka) premixed flames. These scales are particularly important in the two-way coupling between turbulence and chemistry and better understanding of these scales will support future modeling efforts using large eddy simulations (LES). The smallest turbulent scales are studied by considering the vorticity vector, ω, and its transport equation.

Due to the complexity of turbulent combustion introduced by the wide range of length and time scales, the two-dimensional vortex-flame interaction is first studied as a simplified test case. Numerical and analytical techniques are used to discern the dominate transport terms and their effects on vorticity based on the initial size and strength of the vortex. This description of the effects of the flame on a vortex provides a foundation for investigating vorticity in turbulent combustion.

Subsequently, enstrophy, ω2 = ω • ω, and its transport equation are investigated in premixed turbulent combustion. For this purpose, a series of direct numerical simulations (DNS) of premixed n-heptane/air flames are performed, the conditions of which span a wide range of unburnt Karlovitz numbers and turbulent Reynolds numbers. Theoretical scaling analysis along with the DNS results support that, at high Karlovitz number, enstrophy transport is controlled by the viscous dissipation and vortex stretching/production terms. As a result, vorticity scales throughout the flame with the inverse of the Kolmogorov time scale, τη, just as in homogeneous isotropic turbulence. As τη is only a function of the viscosity and dissipation rate, this supports the validity of Kolmogorov’s first similarity hypothesis for sufficiently high Ka numbers (Ka ≳ 100). These conclusions are in contrast to low Karlovitz number behavior, where dilatation and baroclinic torque have a significant impact on vorticity within the flame. Results are unaffected by the transport model, chemical model, turbulent Reynolds number, and lastly the physical configuration.

Next, the isotropy of vorticity is assessed. It is found that given a sufficiently large value of the Karlovitz number (Ka ≳ 100) the vorticity is isotropic. At lower Karlovitz numbers, anisotropy develops due to the effects of the flame on the vortex stretching/production term. In this case, the local dynamics of vorticity in the strain-rate tensor, S, eigenframe are altered by the flame. At sufficiently high Karlovitz numbers, the dynamics of vorticity in this eigenframe resemble that of homogeneous isotropic turbulence.

Combined, the results of this thesis support that both the magnitude and orientation of vorticity resemble the behavior of homogeneous isotropic turbulence, given a sufficiently high Karlovitz number (Ka ≳ 100). This supports the validity of Kolmogorov’s first similarity hypothesis and the hypothesis of local isotropy under these condition. However, dramatically different behavior is found at lower Karlovitz numbers. These conclusions provides/suggests directions for modeling high Karlovitz number premixed flames using LES. With more accurate models, the design of aircraft combustors and other combustion based devices may better mitigate the detrimental effects of combustion, from reducing CO2 and soot production to increasing engine efficiency.