802 resultados para EXCHANGE ENHANCEMENT
Resumo:
The photospheres of stars hosting planets have larger metallicity than stars lacking planets. This could be the result of a metallic star contamination produced by the bombarding of hydrogen-deficient solid bodies. In the present work we study the possibility of an earlier metal enrichment of the photospheres by means of impacting planetesimals during the first 20-30 Myr. Here we explore this contamination process by simulating the interactions of an inward migrating planet with a disc of planetesimal interior to its orbit. The results show the percentage of planetesimals that fall on the star. We identified the dependence of the planet's eccentricity (e(p)) and time-scale of migration (tau) on the rate of infalling planetesimals. For very fast migrations (tau= 10(2) and 10(3) yr) there is no capture in mean motion resonances, independently of the value of e(p). Then, due to the planet's migration the planetesimals suffer close approaches with the planet and more than 80 per cent of them are ejected from the system. For slow migrations (tau= 10(5)and 10(6) yr) the percentage of collisions with the planet decreases with the increase of the planet's eccentricity. For e(p) = 0 and 0.1 most of the planetesimals were captured in the 2:1 resonance and more than 65 per cent of them collided with the star. Whereas migration of a Jupiter mass planet to very short pericentric distances requires unrealistic high disc masses, these requirements are much smaller for smaller migrating planets. Our simulations for a slowly migrating 0.1 M-Jupiter planet, even demanding a possible primitive disc three times more massive than a primitive solar nebula, produces maximum [Fe/H] enrichments of the order of 0.18 dex. These calculations open possibilities to explain hot Jupiter exoplanet metallicities.
Resumo:
This report demonstrates that due to the presence of residual reactive sites in their matrices, classical diethylaminoethyl-attaching commercial anion-exchanger resins such as DEAE-MacroPrep and DEAE-Sephadex A50 supports can be used for peptide synthesis. Moreover, due to the high stability of the peptide-resin bond in the final cleavage treatments, desired peptidyl-resins free of side-chain protecting groups, which enables them to be further used as solid support for affinity chromatography, can be obtained. To demonstrate this potentiality, a fragment corresponding to the antigenic and immunodominant epitope of sporozoites of the Plasmodium falciparum malaria parasite was synthesized in these traditional resins and antibody molecules generated against the peptide sequence were successfully retained in these peptidyl supports. Due to the maintenance of their original anion-exchange capacities, the present findings open the unique possibility of applying, simultaneously, dual anion-exchange and affinity procedures for purification of a variety of macromolecules. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
Erbium-activated silica-based planar waveguides were prepared by three different technological routes: RF-sputtering, sol-gel and ion exchange. Various parameters of preparation were varied in order to optimize the waveguides for operation in the NIR region. Particular attention was devoted to the minimization of the losses and the increase of the luminescence efficiency of the metastable I-4(13/2) state of the Er3+ ion. Waveguide properties were determined by m-line spectroscopy and loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical processes related to the luminescence of the Er3+ ions.
Resumo:
Electron spin resonance of Eu(2+) (4f(7), S=7/2) in a La hexaboride (LaB(6)) single crystal shows a single anisotropic Dysonian resonance. From the observed negative g shift of the resonance, it is inferred that the Eu(2+) ions are covalent exchange coupled to the B 2p-like host conduction electrons. From the anisotropy of the spectra (linewidth and field for resonance), we found that the S ground state of Eu(2+) ions experience a cubic crystal field of a negative fourth order crystal field parameter (CFP), b(4)=-11.5(2.0) Oe, in agreement with the negative fourth order CFP, A(4), found for the non-S ground state R hexaborides. These results support covalency as the dominant contribution to the fourth order CFP for the whole R hexaboride family.
Resumo:
C-13 exchange solid-state NMR methods were used to study two families of siloxane/poly-(ethylene glycol) hybrid materials: Types I and II, where the polymer chains interact with the inorganic phase through physical (hydrogen bonds or van der Waals forces) or chemical (covalent bonds) interactions, respectively. These methods were employed to analyze the effects of the interactions between the organic and inorganic phases on the polymer dynamics in the milliseconds to seconds time scale, which occurs at temperatures below the motional narrowing of the NMR line width and around the polymer glass transition. Motional heterogeneities associated with these interactions and evidence of both small and large amplitude motions were directly observed for both types of hybrids. The results revealed that the hindrance to the slow molecular motions of the polymer chains due to the siloxane structures depends on the chain length and the nature of the interaction between the organic and inorganic phases.
Resumo:
The electron spin resonance (ESR) spectra of Eu2+ (4f(7), S = 7/2) in LaB6 single crystal show a single Dysonian resonance for the localized Eu2+ magnetic moments. It is shown that the Eu2+ ions are covalent exchange coupled to the (B) 2p-like host conduction electrons. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Labile metal species in aquatic humic substances (HSs) were characterized by ion exchange on cellulose phosphate (CellPhos) by applying an optimized batch procedure. The HSs investigated were pre-extracted from humic-rich waters by ultrafiltration and a resin XAD 8 procedure. The HS-metal species studied were formed by complexation with Cd(II), Ni(II), Cu(II), Mn(II) and Pb(II) as a function of time and the ratio ions to HSs. The kinetics and reaction order of this exchange process were studied. At the beginning (<3 min), the labile metal fractions are separated relatively quickly. After 3 min, the separation of the metal ions proceeds with uniform half-lives of about 12-14 min, revealing rather slow first-order kinetics. The metal exchange between HSs and CellPhos exhibited the following order of metal lability with the studied HSs: Cu > Pb > Mn > Ni > Cd. The required metal determinations were carried out by atomic absorption spectrometry.
Resumo:
In the present work, we studied the effects of two titanocenes, biscyclopentadienyidichlorotitanium IV, (DDCT) and its derivative, biscyclopentadienylditiocianatetitanium IV (BCDT), on the activity of natural killer (NK) cells in Ehrlich ascites tumour (EAT)-bearing BALB/c mice. In order to investigate a more direct effect of these compounds on NK cell function, we performed experiments with severe combined immunodeficiency (SCID) mice, which exhibit a normal NK cell response in the absence of T and B cells. The treatment consisted of intraperitoneal (i.p.) administration of 15 mg/kg/day of DDCT for 2 days or 10 mg/kg/day of BCDT for 3 days. In addition, to verify whether the effects produced by the titanocenes were compound specific or related to a direct antitumour effect, we also investigated the effects of a 3-day treatment with 100 mg/kg of cyclophosphamide cyclophosphamide on NK cell activity. Our results demonstrated that, in BALB/c and SCID mice, NK cell function declined to subnormal levels after inoculation of the tumour. In these animals, although treatment with DDCT and BCDT significantly enhanced NK cell function, only DDCT restored NK cell activity to normal values in all stages studied. Conversely, treatment with cyclophosphamide reduced NK cell function in nontumour bearing SCID mice and was also unable to restore the decreased NK activity of tumour-bearing SCID mice, thus demonstrating that the enhancement of NK cell function by titanocenes is compound specific. The same effect of cyclophosphamide was observed with BALB/c mice. In the present study, the up-modulatory effects of these two compounds on NK cell function reveal a new aspect of the mechanism of antitumoural action of titanocenes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The effect of different doses of nitrogen (N) on gas exchange, relative chlorophyll (Chl) amount, and the content of N in the aerial biomass of lisianthus was evaluated. The treatments consisted of six different concentrations of N (50, 100, 150, 200, 250, and 300 g m(-3) noted as N-50, N-100, N-150, N-200, N-250, and N-300, respectively), applied through the fertirrigation technique. N-250 and N-300 induced increase in the contents of foliar Chl and N in the aerial biomass, that in turn contributed to an increase of photosynthetic activity in lisianthus.
Resumo:
The present paper quantifies and develops the kinetic aspects involved in the mechanism of interplay between electron and ions presented elsewhere(1) for KhFek[Fe(CN)(6)](l)center dot mH(2)O (Prussian Blue) host materials. Accordingly, there are three different electrochemical processes involved in the PB host materials: H3O+, K+, and H+ insertion/extraction mechanisms which here were fully kinetically studied by means of the use of combined electronic and mass transfer functions as a tool to separate all the processes. The use of combined electronic and mass transfer functions was very important to validate and confirm the proposed mechanism. This mechanism allows the electrochemical and chemical processes involved in the KhFek[Fe(CN)(6)](l)center dot mH(2)O host and Prussian Blue derivatives to be understood. In addition, a formalism was also developed to consider superficial oxygen reduction. From the analysis of the kinetic processes involved in the model, it was possible to demonstrate that the processes associated with K+ and H+ exchanges are reversible whereas the H3O+ insertion process was shown not to present a reversible pattern. This irreversible pattern is very peculiar and was shown to be related to the catalytic proton reduction reaction. Furthermore, from the model, it was possible to calculate the number density of available sites for each intercalation/deintercalation processes and infer that they are very similar for K+ and H+. Hence, the high prominence of the K+ exchange observed in the voltammetric responses has a kinetic origin and is not related to the amount of sites available for intercalation/deintercalation of the ions.
Resumo:
This work describes a novel approach for the analysis of selected aldehydes (formaldehyde, acetaldehyde, propionaldehyde, and acrolein) and acetone in environmental samples using micellar electrokinetic chromatography (MEKC). The method is based on the reaction of carbonyl compounds with 3-methyl-2-benzothiazoline hydrazone (MBTH) that gives an azine intermediate with maximum absorbance at 216 nm. A systematic evaluation of sample dissolution medium was conducted as a means to enhancing sensitivity. In the best condition, samples were dissolved in 0.030 mol.L-1 tetraborate solution. This condition presented enhancement factors in the range of 35-54 for the aldehydes under investigation, computed as the improvement of the concentration limits of detection (LODs) with reference to the sample dissolved in pure water. The running buffer was 0.020 mol.L-1 tetraborate, pH 9.3, containing 0.050 mol-L-1 sodium dodecyly sulfate (SIDS). The overall methodology presented several advantages over established methods for aldehydes. Worthy mentioning that MBTH is available in high purity degree, dispensing laborious reagent purification procedures. A few method validation parameters were determined revealing good migration time repeatability (< 2.5% coefficient of variation, CV) and area repeatability (< 4% CV), excellent linearity (20-120 mug/L, r > 0.995) and adequate sensitivity for environmental applications. The LODs with respect to each single aldehyde were in the range of 0.54-4.0 mug.L-1 and 11 mug.L-1 for acetone. The methodology was applied to the determination of aldehydes indoors. Samples were collected in an impinger flask containing 0.05% MBTH solution, at a flow rate of 0.80 L.min(-1), during 2.5 h, at different times during the day. The most abundant carbonyls in the samples were acetone, followed by formaldehyde and acetaldehyde, with estimate peak concentrations of 452, 5.2 and 2.2 ppbv, respectively.
Resumo:
Anomalous thermal behavior on the EPR linewidths of Gd impurities diluted in Cc compounds has been observed. In metals, the local magnetic moment EPR linewidth, Delta H, is expected to increase linearly with the temperature. In contrast, in CexLa1-xOs2 the Gd EPR spectra show a nonlinear increase. In this work, the mechanisms that are responsible for the thermal behavior of the EPR lines in CexLa1-xOs2 are examined. We show that the exchange interaction between the local magnetic moments and the conduction electrons are responsible for the narrowing of the spectra at low temperatures. At high temperatures, the contribution to the linewidth of the exchange interaction between the local magnetic moments and the Ce ions has an exponential dependence on the excitation energy of the intermediate valent ions. A complete fitting of the EPR spectra for powdered samples is obtained, (C) 1998 American Institute of Physics. [S0021-8979(98)39911-9].
Resumo:
We argue that the minimal chiral background for the two-pion exchange nucleon-nucleon (NN) interaction has nowadays a rather firm conceptual basis, which entitles it to become a standard ingredient of any modern potential. In order to facilitate applications, we present a parametrized version of a configuration space potential derived previously. We than use it to assess the phenomenological contents of some existing NN potentials.
Resumo:
The magnetic order resulting from the indirect exchange in the metallic phase of a (Ga,Mn)As/GaAs double layer structure is studied via Monte Carlo simulation. The polarization of the hole gas is taken into account, establishing a self-consistency between the magnetic order and the electronic structure. The Curie-Weiss temperatures calculated for these low-dimensional systems are in the range of 50-80 K, and the dependence of the transition temperature with the GaAs separation layer is established. (C) 2003 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)