946 resultados para ENDOCRINE DISRUPTORS
Resumo:
Healthy nutrition is accepted as a cornerstone of public health strategies for reducing the risk of noncommunicable conditions such as obesity, cardiovascular disease, and related morbidities. However, many research studies continue to focus on single or at most a few factors that may elicit a metabolic effect. These reductionist approaches resulted in: (1) exaggerated claims for nutrition as a cure or prevention of disease; (2) the wide use of empirically based dietary regimens, as if one fits all; and (3) frequent disappointment of consumers, patients, and healthcare providers about the real impact nutrition can make on medicine and health. Multiple factors including environment, host and microbiome genetics, social context, the chemical form of the nutrient, its (bio)availability, and chemical and metabolic interactions among nutrients all interact to result in nutrient requirement and in health outcomes. Advances in laboratory methodologies, especially in analytical and separation techniques, are making the chemical dissection of foods and their availability in physiological tissues possible in an unprecedented manner. These omics technologies have opened opportunities for extending knowledge of micronutrients and of their metabolic and endocrine roles. While these technologies are crucial, more holistic approaches to the analysis of physiology and environment, novel experimental designs, and more sophisticated computational methods are needed to advance our understanding of how nutrition influences health of individuals.
Resumo:
The pancreas produces enzymes with a digestive function and hormones with a metabolic function, which are produced by distinct cell types of acini and islets, respectively. Within these units, secretory cells coordinate their functioning by exchanging information via signals that flow in the intercellular spaces and are generated either at distance (several neural and hormonal inputs) or nearby the pancreatic cells themselves (inputs mediated by membrane ionic-specific channels and by ionic- and metabolite-permeant pannexin channels and connexin "hemichannels"). Pancreatic secretory cells further interact via the extracellular matrix of the pancreas (inputs mediated by integrins) and directly with neighboring cells, by mechanisms that do not require extracellular mediators (inputs mediated by gap and tight junction channels). Here, we review the expression and function of the connexins and pannexins that are expressed by the main secretory cells of the exocrine and endocrine pancreatic cells. Available data show that the patterns of expression of these proteins differ in acini and islets, supporting distinct functions in the physiological secretion of pancreatic enzymes and hormones. Circumstantial evidence further suggests that alterations in the signaling provided by these proteins are involved in pancreatic diseases.
Resumo:
Breast cancer is the most common cancer in women, and its development is intimately related to hormonal factors, but how hormones affect breast physiology and tumorigenesis is not sufficiently known. Pregnancy elicits long-term protection from breast cancer, but during the first ten years after pregnancy, breast cancer risk is increased. In previous studies, there has been conflicting data on the role of human chorionic gonadotropin (HCG) and the functionality of its receptor in extragonadal tissues. The aim of this study was to elucidate the role of chronically elevated HCG in mouse physiology. We have created a transgenic (TG) mouse model that overexpresses HCG. HCG is similar to lutenizing hormone (LH), but is secreted almost solely by the placenta during pregnancy. HCG and LH both bind to the LH receptor (LHR). In the current study, mammary gland tumors were observed in HCG TG mice. We elucidated the role of HCG in mammary gland signalling and the effects of LHR mediated signalling in mouse mammary gland gene expression. We also studied the effects of HCG in human breast epithelial cell cultures. Several endocrine disturbances were observed in HCGβ TG female mice, resulting in precocious puberty, infertility, obesity and pituitary and mammary gland tumors. The histology of the mammary gland tumors of HCGβ TG females resembled those observed in mouse models with activated Wnt/β-catenin signalling pathway. Wnts are involved in stem cell regulation and tumorigenesis, and are hormonally regulated in the mammary gland. We observed activated β-catenin signalling and elevated expression of Wnt5b and Wnt7b in TG tumors and mammary glands. Furthermore, we discovered that HCG directly regulates the expression of Wnt5b and Wnt7b in the mouse mammary gland. Pharmacological treatment with HCG also caused upregulation of several Wnt-pathway target genes in ovariectomized wild type (WT) mice in the presence of physiological concentrations of estradiol and progesterone. In addition, differential expression of several metabolic genes was observed, suggesting that HCG affects adipocyte function or glucose metabolism. When WT mice were transplanted with LHR deficient or wild type WT mammary epithelium, differential expression of several genes affecting the Wnt-signalling pathway was observed in microarray analysis. Diminished expression of several genes associated with LHR function in other tissues, such as the ovary, was observed in mammary glands deficient of epithelial LHR. In cultured human mammary epithelial cells HCG upregulated the expression of WNT5B, WNT7B similar to mouse, suggesting that the observations found are relevant in human physiology. These studies suggest that HCG/LHR signalling affects gene expression in non-gonadal tissues, and that Wnt-signalling is regulated by HCG/LH in human and mouse mammary glands.
Resumo:
CONTEXT: Complex steroid disorders such as P450 oxidoreductase deficiency or apparent cortisone reductase deficiency may be recognized by steroid profiling using chromatographic mass spectrometric methods. These methods are highly specific and sensitive, and provide a complete spectrum of steroid metabolites in a single measurement of one sample which makes them superior to immunoassays. The steroid metabolome during the fetal-neonatal transition is characterized by (a) the metabolites of the fetal-placental unit at birth, (b) the fetal adrenal androgens until its involution 3-6 months postnatally, and (c) the steroid metabolites produced by the developing endocrine organs. All these developmental events change the steroid metabolome in an age- and sex-dependent manner during the first year of life. OBJECTIVE: The aim of this study was to provide normative values for the urinary steroid metabolome of healthy newborns at short time intervals in the first year of life. METHODS: We conducted a prospective, longitudinal study to measure 67 urinary steroid metabolites in 21 male and 22 female term healthy newborn infants at 13 time-points from week 1 to week 49 of life. Urine samples were collected from newborn infants before discharge from hospital and from healthy infants at home. Steroid metabolites were measured by gas chromatography-mass spectrometry (GC-MS) and steroid concentrations corrected for urinary creatinine excretion were calculated. RESULTS: 61 steroids showed age and 15 steroids sex specificity. Highest urinary steroid concentrations were found in both sexes for progesterone derivatives, in particular 20α-DH-5α-DH-progesterone, and for highly polar 6α-hydroxylated glucocorticoids. The steroids peaked at week 3 and decreased by ∼80% at week 25 in both sexes. The decline of progestins, androgens and estrogens was more pronounced than of glucocorticoids whereas the excretion of corticosterone and its metabolites and of mineralocorticoids remained constant during the first year of life. CONCLUSION: The urinary steroid profile changes dramatically during the first year of life and correlates with the physiologic developmental changes during the fetal-neonatal transition. Thus detailed normative data during this time period permit the use of steroid profiling as a powerful diagnostic tool.
Resumo:
NlmCategory="UNASSIGNED">Insulin is a key hormone controlling metabolic homeostasis. Loss or dysfunction of pancreatic β-cells lead to the release of insufficient insulin to cover the organism needs, promoting diabetes development. Since dietary nutrients influence the activity of β-cells, their inadequate intake, absorption and/or utilisation can be detrimental. This review will highlight the physiological and pathological effects of nutrients on insulin secretion and discuss the underlying mechanisms. Glucose uptake and metabolism in β-cells trigger insulin secretion. This effect of glucose is potentiated by amino acids and fatty acids, as well as by entero-endocrine hormones and neuropeptides released by the digestive tract in response to nutrients. Glucose controls also basal and compensatory β-cell proliferation and, along with fatty acids, regulates insulin biosynthesis. If in the short-term nutrients promote β-cell activities, chronic exposure to nutrients can be detrimental to β-cells and causes reduced insulin transcription, increased basal secretion and impaired insulin release in response to stimulatory glucose concentrations, with a consequent increase in diabetes risk. Likewise, suboptimal early-life nutrition (e.g. parental high-fat or low-protein diet) causes altered β-cell mass and function in adulthood. The mechanisms mediating nutrient-induced β-cell dysfunction include transcriptional, post-transcriptional and translational modifications of genes involved in insulin biosynthesis and secretion, carbohydrate and lipid metabolism, cell differentiation, proliferation and survival. Altered expression of these genes is partly caused by changes in non-coding RNA transcripts induced by unbalanced nutrient uptake. A better understanding of the mechanisms leading to β-cell dysfunction will be critical to improve treatment and find a cure for diabetes.
Resumo:
En este Trabajo de Fin de Grado se estudia el origen embrionario de las distintas poblaciones neuronales que forman la amígdala medial extendida. La amígdala es una estructura del cerebro anterior involucrada en otorgar un significado emocional a los estímulos ambientales y en el control de distintos aspectos del comportamiento social (p.ej. comportamientos sexual, maternal, agresivo y afiliativo). Ante dichos estímulos, la amígdala pone en marcha una serie de reacciones de carácter motor, autonómico y endocrino que constituyen la respuesta emocional. Algunos desórdenes de carácter neuropsiquiátrico en humanos están relacionados con una disfunción en el control de las emociones y del comportamiento social, y varios de ellos se asocian a alteraciones en el desarrollo de la amígdala. El objetivo del presente trabajo ha sido investigar el origen de las neuronas de la amígdala medial extendida en embriones de pollo (E15 y E18) mediante ensayos de inmunocitoquímica, técnica utilizada para localizar las células que contienen el neuropéptido vasotocina (AVT) y proteínas reguladoras del desarrollo (la producida a partir del gen Otp) para ayudar en la delimitación de los distintos dominios embrionarios del prosencéfalo y distintas subdivisiones de la amígdala extendida. Los resultados de estos ensayos se combinaron con ensayos de trazado de conexiones para analizar la conectividad de las neuronas vasotocinérgicas de esta estructura. Los resultados obtenidos sugieren que las neuronas AVT-positivas podrían derivar del dominio Supra-Opto-Paraventricular (SPV), y algunas poblaciones alcanzarían su posición definitiva dentro del propio dominio por migración radial, mientras que otras invadirían otros dominios cerebrales por migración tangencial. En conclusión, la investigación proporciona importantes datos que clarifican aspectos relevantes del desarrollo y organización adulta de la amígdala extendida, y ayuda a establecer las bases para una mejor comprensión del control neural de las emociones y el comportamiento social en condiciones normales y patológicas.
Resumo:
The genetic aetiology of congenital hypopituitarism (CH) is not entirely elucidated. FGFR1 and PROKR2 loss-of-function mutations are classically involved in hypogonadotrophic hypogonadism (HH), however, due to the clinical and genetic overlap of HH and CH; these genes may also be involved in the pathogenesis of CH. Using a candidate gene approach, we screened 156 Brazilian patients with combined pituitary hormone deficiencies (CPHD) for loss-of-function mutations in FGFR1 and PROKR2. We identified three FGFR1 variants (p.Arg448Trp, p.Ser107Leu and p.Pro772Ser) in four unrelated patients (two males) and two PROKR2 variants (p.Arg85Cys and p.Arg248Glu) in two unrelated female patients. Five of the six patients harbouring the variants had a first-degree relative that was an unaffected carrier of it. Results of functional studies indicated that the new FGFR1 variant p.Arg448Trp is a loss-of-function variant, while p.Ser107Leu and p.Pro772Ser present signalling activity similar to the wild-type form. Regarding PROKR2 variants, results from previous functional studies indicated that p.Arg85Cys moderately compromises receptor signalling through both MAPK and Ca(2) (+) pathways while p.Arg248Glu decreases calcium mobilization but has normal MAPK activity. The presence of loss-of-function variants of FGFR1 and PROKR2 in our patients with CPHD is indicative of an adjuvant and/or modifier effect of these rare variants on the phenotype. The presence of the same variants in unaffected relatives implies that they cannot solely cause the phenotype. Other associated genetic and/or environmental modifiers may play a role in the aetiology of this condition.
Resumo:
The period of adolescence is not only marked by important growth and pubertal events, but is also characterized by important psychosocial changes driven by a search for autonomy and the construction of one's identity. It can thus be easily understood that puberty disorders interfere heavily with these process, requiring from the endocrinologist not only medical knowledge, but also a great deal of emotional and psychological skills. They must progressively move from an educational approach that heavily involves the parents to one of shared information and decision making that places the young patient at the center of the therapeutic process. This can be achieved in several ways: respecting the affective and cognitive development of the adolescent; securing his privacy and (if requested by him) confidentiality; exploring his self-image and self-esteem and adapting the therapeutic process to the patient's expectations; reviewing the teenager's lifestyle, including the issue of sexuality and sexual behavior, and involving him in any therapeutic choice that has to be made, even if it does not match with the parents' expectations. The skills required for this respectful and holistic follow-up often exceed the abilities of any physician; it is thus suggested that a team approach involving a clinical nurse and/or a psychologist and/or social worker(s) be set up whenever possible.
Resumo:
In the CNS, NPY has been implicated in obesity and feeding, endocrine function and metabolism. Potent and selective rNPY antagonists will be able to probe the merits of this approach for the treatment of obesity. We report the synthesis and preliminary evaluation of some hydrazide derivatives as antagonists of rNPY.
Resumo:
Natural and synthetic estrogens have been detected in rivers, lakes and estuaries in several parts of the world. The primary sources of these compounds are the industrial and household effluents, which are not eliminated by the received treatment. This paper presents a brief description of the problem as well as the physical and chemical characteristics of the main compounds, the environmental behavior, methods of determination, ecotoxicological aspects and a discussion about its relevance in terms of ecology and public health.
Resumo:
There is an increasing interest in micropollutants in the environment that can interfere with the endocrine system, affecting health, growth and reproduction of animals and humans. These substances are known as Endocrine Disrupting Chemicals (EDCs) and can be found in domestic sewage, domestic wastewater treatment plant effluents, and in natural and potable waters. There are numerous chemicals classified as EDCs, such as pesticides, chemicals used and produced by chemical industries and natural and synthetic estrogens. EDCs can be related to the increase of the incidence of anomalies in the reproductive system of animals, cancer in humans and reduction of the masculine fertility.
Resumo:
Bisphenol A (BPA) is a monomer used in epoxy resin and polycarbonate manufacture. This molecule is considered as an endocrine disruptor that causes different diseases. The human exposition to this non biodegrable substance is increasing in the time; in particular, water is contaminated by industrial remainder flow. In this article heterogeneous photo degradation of a solution of BPA in water solution using a catalytic photo reactor with UV light and titanium dioxide (TiO2) was evaluated. High performance liquid chromatography (HPLC) was used to analyze the photo degradation of BPA solutions. The influence of titanium dioxide amount, BPA concentration, reaction temperature and the catalyst state like suspension and immobilized were also determinated. The highest elimination of BPA was 83.2%, in 240 min, beginning with 0.05 mM of BPA and 100 mg/L of TiO2 in suspension.
Resumo:
Pharmaceutical compounds have been detected in sewage treatment plant (STP) effluents, surface waters and, less frequently, in groundwater and drinking water, all over the world. Different sources are responsible for their appearance in the aquatic environment, however, it is widely accepted that the main sources of this type of pollutant are STP effluents. The adverse effects of pharmaceuticals in the environment include aquatic toxicity, development of resistance in pathogenic bacteria, genotoxicity and endocrine disruption. Thus, the discharge of these compounds to the environment in STP effluents should be minimized.