839 resultados para Data security
Resumo:
Queensland University of Technology (QUT) completed an Australian National Data Service (ANDS) funded “Seeding the Commons Project” to contribute metadata to Research Data Australia. The project employed two Research Data Librarians from October 2009 through to July 2010. Technical support for the project was provided by QUT’s High Performance Computing and Research Support Specialists. ---------- The project identified and described QUT’s category 1 (ARC / NHMRC) research datasets. Metadata for the research datasets was stored in QUT’s Research Data Repository (Architecta Mediaflux). Metadata which was suitable for inclusion in Research Data Australia was made available to the Australian Research Data Commons (ARDC) in RIF-CS format. ---------- Several workflows and processes were developed during the project. 195 data interviews took place in connection with 424 separate research activities which resulted in the identification of 492 datasets. ---------- The project had a high level of technical support from QUT High Performance Computing and Research Support Specialists who developed the Research Data Librarian interface to the data repository that enabled manual entry of interview data and dataset metadata, creation of relationships between repository objects. The Research Data Librarians mapped the QUT metadata repository fields to RIF-CS and an application was created by the HPC and Research Support Specialists to generate RIF-CS files for harvest by the Australian Research Data Commons (ARDC). ---------- This poster will focus on the workflows and processes established for the project including: ---------- • Interview processes and instruments • Data Ingest from existing systems (including mapping to RIF-CS) • Data entry and the Data Librarian interface to Mediaflux • Verification processes • Mapping and creation of RIF-CS for the ARDC
Resumo:
Most information retrieval (IR) models treat the presence of a term within a document as an indication that the document is somehow "about" that term, they do not take into account when a term might be explicitly negated. Medical data, by its nature, contains a high frequency of negated terms - e.g. "review of systems showed no chest pain or shortness of breath". This papers presents a study of the effects of negation on information retrieval. We present a number of experiments to determine whether negation has a significant negative affect on IR performance and whether language models that take negation into account might improve performance. We use a collection of real medical records as our test corpus. Our findings are that negation has some affect on system performance, but this will likely be confined to domains such as medical data where negation is prevalent.
Resumo:
In a seminal data mining article, Leo Breiman [1] argued that to develop effective predictive classification and regression models, we need to move away from the sole dependency on statistical algorithms and embrace a wider toolkit of modeling algorithms that include data mining procedures. Nevertheless, many researchers still rely solely on statistical procedures when undertaking data modeling tasks; the sole reliance on these procedures has lead to the development of irrelevant theory and questionable research conclusions ([1], p.199). We will outline initiatives that the HPC & Research Support group is undertaking to engage researchers with data mining tools and techniques; including a new range of seminars, workshops, and one-on-one consultations covering data mining algorithms, the relationship between data mining and the research cycle, and limitations and problems with these new algorithms. Organisational limitations and restrictions to these initiatives are also discussed.
Resumo:
The Guardian reportage of the United Kingdom Member of Parliament (MP) expenses scandal of 2009 used crowdsourcing and computational journalism techniques. Computational journalism can be broadly defined as the application of computer science techniques to the activities of journalism. Its foundation lies in computer assisted reporting techniques and its importance is increasing due to the: (a) increasing availability of large scale government datasets for scrutiny; (b) declining cost, increasing power and ease of use of data mining and filtering software; and Web 2.0; and (c) explosion of online public engagement and opinion.. This paper provides a case study of the Guardian MP expenses scandal reportage and reveals some key challenges and opportunities for digital journalism. It finds journalists may increasingly take an active role in understanding, interpreting, verifying and reporting clues or conclusions that arise from the interrogations of datasets (computational journalism). Secondly a distinction should be made between information reportage and computational journalism in the digital realm, just as a distinction might be made between citizen reporting and citizen journalism. Thirdly, an opportunity exists for online news providers to take a ‘curatorial’ role, selecting and making easily available the best data sources for readers to use (information reportage). These activities have always been fundamental to journalism, however the way in which they are undertaken may change. Findings from this paper may suggest opportunities and challenges for the implementation of computational journalism techniques in practice by digital Australian media providers, and further areas of research.
Resumo:
We describe the introduction, service growth, benefits and holistic support approach of a centrally supported universitywide online survey tool for researchers at QUT. The online survey service employs the Key Survey software, and has grown into a significant service for QUT researchers since being introduced in 2009. Key benefits of the approach include the ability of QUT to handle important issues relating to data such as security, privacy, integrity, archiving & disposal. The service also incorporates a workflow process that enhances the institution’s ability to ensure survey quality control through controlled approval and pilot testing before any survey is widely released. An important issue is that a tool like this can make it very easy to do very poor research very quickly while creating lots of data, due to the absence of a rigorous methodology designed to reduce errors and collect accurate, comprehensive, timely data. With this in mind, a holistic approach to service provision and support has been taken, which has included the introduction of an integrated system of seminars, tools and workshops to get researchers thinking about the quality of their research while becoming operational quickly. The system of seminars, workshops, checks and approvals we have put in place at QUT is designed to ensure better quality outcomes for QUT’s research and the individual researchers concerned.
Resumo:
Acoustic emission (AE) technique is one of the popular diagnostic techniques used for structural health monitoring of mechanical, aerospace and civil structures. But several challenges still exist in successful application of AE technique. This paper explores various tools for analysis of recorded AE data to address two primary challenges: discriminating spurious signals from genuine signals and devising ways to quantify damage levels.
Resumo:
Several studies have developed metrics for software quality attributes of object-oriented designs such as reusability and functionality. However, metrics which measure the quality attribute of information security have received little attention. Moreover, existing security metrics measure either the system from a high level (i.e. the whole system’s level) or from a low level (i.e. the program code’s level). These approaches make it hard and expensive to discover and fix vulnerabilities caused by software design errors. In this work, we focus on the design of an object-oriented application and define a number of information security metrics derivable from a program’s design artifacts. These metrics allow software designers to discover and fix security vulnerabilities at an early stage, and help compare the potential security of various alternative designs. In particular, we present security metrics based on composition, coupling, extensibility, inheritance, and the design size of a given object-oriented, multi-class program from the point of view of potential information flow.
Resumo:
Refactoring focuses on improving the reusability, maintainability and performance of programs. However, the impact of refactoring on the security of a given program has received little attention. In this work, we focus on the design of object-oriented applications and use metrics to assess the impact of a number of standard refactoring rules on their security by evaluating the metrics before and after refactoring. This assessment tells us which refactoring steps can increase the security level of a given program from the point of view of potential information flow, allowing application designers to improve their system’s security at an early stage.
Resumo:
This work examines the algebraic cryptanalysis of small scale variants of the LEX-BES. LEX-BES is a stream cipher based on the Advanced Encryption Standard (AES) block cipher. LEX is a generic method proposed for constructing a stream cipher from a block cipher, initially introduced by Biryukov at eSTREAM, the ECRYPT Stream Cipher project in 2005. The Big Encryption System (BES) is a block cipher introduced at CRYPTO 2002 which facilitates the algebraic analysis of the AES block cipher. In this article, experiments were conducted to find solutions of equation systems describing small scale LEX-BES using Gröbner Basis computations. This follows a similar approach to the work by Cid, Murphy and Robshaw at FSE 2005 that investigated algebraic cryptanalysis on small scale variants of the BES. The difference between LEX-BES and BES is that due to the way the keystream is extracted, the number of unknowns in LEX-BES equations is fewer than the number in BES. As far as the authors know, this attempt is the first at creating solvable equation systems for stream ciphers based on the LEX method using Gröbner Basis computations.
Resumo:
Cell invasion involves a population of cells which are motile and proliferative. Traditional discrete models of proliferation involve agents depositing daughter agents on nearest- neighbor lattice sites. Motivated by time-lapse images of cell invasion, we propose and analyze two new discrete proliferation models in the context of an exclusion process with an undirected motility mechanism. These discrete models are related to a family of reaction- diffusion equations and can be used to make predictions over a range of scales appropriate for interpreting experimental data. The new proliferation mechanisms are biologically relevant and mathematically convenient as the continuum-discrete relationship is more robust for the new proliferation mechanisms relative to traditional approaches.
Resumo:
Gen Y beginning teachers have an edge: they’ve grown up in an era of educational accountability, so when their students have to sit a high-stakes test, they can relate.
Resumo:
Given there is currently a migration trend from traditional electrical supervisory control and data acquisition (SCADA) systems towards a smart grid based approach to critical infrastructure management. This project provides an evaluation of existing and proposed implementations for both traditional electrical SCADA and smart grid based architectures, and proposals a set of reference requirements which test bed implementations should implement. A high-level design for smart grid test beds is proposed and initial implementation performed, based on the proposed design, using open source and freely available software tools. The project examines the move towards smart grid based critical infrastructure management and illustrates the increased security requirements. The implemented test bed provides a basic framework for testing network requirements in a smart grid environment, as well as a platform for further research and development. Particularly to develop, implement and test network security related disturbances such as intrusion detection and network forensics. The project undertaken proposes and develops an architecture of the emulation of some smart grid functionality. The Common Open Research Emulator (CORE) platform was used to emulate the communication network of the smart grid. Specifically CORE was used to virtualise and emulate the TCP/IP networking stack. This is intended to be used for further evaluation and analysis, for example the analysis of application protocol messages, etc. As a proof of concept, software libraries were designed, developed and documented to enable and support the design and development of further smart grid emulated components, such as reclosers, switches, smart meters, etc. As part of the testing and evaluation a Modbus based smart meter emulator was developed to provide basic functionality of a smart meter. Further code was developed to send Modbus request messages to the emulated smart meter and receive Modbus responses from it. Although the functionality of the emulated components were limited, it does provide a starting point for further research and development. The design is extensible to enable the design and implementation of additional SCADA protocols. The project also defines an evaluation criteria for the evaluation of the implemented test bed, and experiments are designed to evaluate the test bed according to the defined criteria. The results of the experiments are collated and presented, and conclusions drawn from the results to facilitate discussion on the test bed implementation. The discussion undertaken also present possible future work.
Resumo:
We present several new observations on the SMS4 block cipher, and discuss their cryptographic significance. The crucial observation is the existence of fixed points and also of simple linear relationships between the bits of the input and output words for each component of the round functions for some input words. This implies that the non-linear function T of SMS4 does not appear random and that the linear transformation provides poor diffusion. Furthermore, the branch number of the linear transformation in the key scheduling algorithm is shown to be less than optimal. The main security implication of these observations is that the round function is not always non-linear. Due to this linearity, it is possible to reduce the number of effective rounds of SMS4 by four. We also investigate the susceptibility of SMS4 to further cryptanalysis. Finally, we demonstrate a successful differential attack on a slightly modified variant of SMS4. These findings raise serious questions on the security provided by SMS4.
Resumo:
The present rate of technological advance continues to place significant demands on data storage devices. The sheer amount of digital data being generated each year along with consumer expectations, fuels these demands. At present, most digital data is stored magnetically, in the form of hard disk drives or on magnetic tape. The increase in areal density (AD) of magnetic hard disk drives over the past 50 years has been of the order of 100 million times, and current devices are storing data at ADs of the order of hundreds of gigabits per square inch. However, it has been known for some time that the progress in this form of data storage is approaching fundamental limits. The main limitation relates to the lower size limit that an individual bit can have for stable storage. Various techniques for overcoming these fundamental limits are currently the focus of considerable research effort. Most attempt to improve current data storage methods, or modify these slightly for higher density storage. Alternatively, three dimensional optical data storage is a promising field for the information storage needs of the future, offering very high density, high speed memory. There are two ways in which data may be recorded in a three dimensional optical medium; either bit-by-bit (similar in principle to an optical disc medium such as CD or DVD) or by using pages of bit data. Bit-by-bit techniques for three dimensional storage offer high density but are inherently slow due to the serial nature of data access. Page-based techniques, where a two-dimensional page of data bits is written in one write operation, can offer significantly higher data rates, due to their parallel nature. Holographic Data Storage (HDS) is one such page-oriented optical memory technique. This field of research has been active for several decades, but with few commercial products presently available. Another page-oriented optical memory technique involves recording pages of data as phase masks in a photorefractive medium. A photorefractive material is one by which the refractive index can be modified by light of the appropriate wavelength and intensity, and this property can be used to store information in these materials. In phase mask storage, two dimensional pages of data are recorded into a photorefractive crystal, as refractive index changes in the medium. A low-intensity readout beam propagating through the medium will have its intensity profile modified by these refractive index changes and a CCD camera can be used to monitor the readout beam, and thus read the stored data. The main aim of this research was to investigate data storage using phase masks in the photorefractive crystal, lithium niobate (LiNbO3). Firstly the experimental methods for storing the two dimensional pages of data (a set of vertical stripes of varying lengths) in the medium are presented. The laser beam used for writing, whose intensity profile is modified by an amplitudemask which contains a pattern of the information to be stored, illuminates the lithium niobate crystal and the photorefractive effect causes the patterns to be stored as refractive index changes in the medium. These patterns are read out non-destructively using a low intensity probe beam and a CCD camera. A common complication of information storage in photorefractive crystals is the issue of destructive readout. This is a problem particularly for holographic data storage, where the readout beam should be at the same wavelength as the beam used for writing. Since the charge carriers in the medium are still sensitive to the read light field, the readout beam erases the stored information. A method to avoid this is by using thermal fixing. Here the photorefractive medium is heated to temperatures above 150�C; this process forms an ionic grating in the medium. This ionic grating is insensitive to the readout beam and therefore the information is not erased during readout. A non-contact method for determining temperature change in a lithium niobate crystal is presented in this thesis. The temperature-dependent birefringent properties of the medium cause intensity oscillations to be observed for a beam propagating through the medium during a change in temperature. It is shown that each oscillation corresponds to a particular temperature change, and by counting the number of oscillations observed, the temperature change of the medium can be deduced. The presented technique for measuring temperature change could easily be applied to a situation where thermal fixing of data in a photorefractive medium is required. Furthermore, by using an expanded beam and monitoring the intensity oscillations over a wide region, it is shown that the temperature in various locations of the crystal can be monitored simultaneously. This technique could be used to deduce temperature gradients in the medium. It is shown that the three dimensional nature of the recording medium causes interesting degradation effects to occur when the patterns are written for a longer-than-optimal time. This degradation results in the splitting of the vertical stripes in the data pattern, and for long writing exposure times this process can result in the complete deterioration of the information in the medium. It is shown in that simply by using incoherent illumination, the original pattern can be recovered from the degraded state. The reason for the recovery is that the refractive index changes causing the degradation are of a smaller magnitude since they are induced by the write field components scattered from the written structures. During incoherent erasure, the lower magnitude refractive index changes are neutralised first, allowing the original pattern to be recovered. The degradation process is shown to be reversed during the recovery process, and a simple relationship is found relating the time at which particular features appear during degradation and recovery. A further outcome of this work is that the minimum stripe width of 30 ìm is required for accurate storage and recovery of the information in the medium, any size smaller than this results in incomplete recovery. The degradation and recovery process could be applied to an application in image scrambling or cryptography for optical information storage. A two dimensional numerical model based on the finite-difference beam propagation method (FD-BPM) is presented and used to gain insight into the pattern storage process. The model shows that the degradation of the patterns is due to the complicated path taken by the write beam as it propagates through the crystal, and in particular the scattering of this beam from the induced refractive index structures in the medium. The model indicates that the highest quality pattern storage would be achieved with a thin 0.5 mm medium; however this type of medium would also remove the degradation property of the patterns and the subsequent recovery process. To overcome the simplistic treatment of the refractive index change in the FD-BPM model, a fully three dimensional photorefractive model developed by Devaux is presented. This model shows significant insight into the pattern storage, particularly for the degradation and recovery process, and confirms the theory that the recovery of the degraded patterns is possible since the refractive index changes responsible for the degradation are of a smaller magnitude. Finally, detailed analysis of the pattern formation and degradation dynamics for periodic patterns of various periodicities is presented. It is shown that stripe widths in the write beam of greater than 150 ìm result in the formation of different types of refractive index changes, compared with the stripes of smaller widths. As a result, it is shown that the pattern storage method discussed in this thesis has an upper feature size limit of 150 ìm, for accurate and reliable pattern storage.