969 resultados para Continuous 1-Cocycle
Resumo:
The length of the dry period in commercial dairy production is under close scrutiny. While the main concern is the composition and volume of milk produced, the evaluation of colostrum quality under these new paradigms has suggested a decline in IgG concentrations, while some reports indicate no change. Colostrum quality has been defined as an adequate concentration (>50 mg/ml) of immunoglobulin in the secretions to provide the newborn with maximal disease resistance. We investigated the appearance of IgG in mammary pre- and post partum secretions in cows without a dry period (continuously milked, Dry0) and compared the secretions with cows that experienced a dry period of 60 d (Dry60). Blood was collected during the experimental period and plasma analysed for progesterone (P4) and prolactin (Prl). Approximately -6 d relative to parturition, the Dry0 animals exhibited increased concentration of IgG in their secretions to an average of ∼35 mg/ml that remained rather constant through subsequent pregnancy and following parturition. Dry0 cows were producing an average IgG concentration in parturition colostrum of 44·2±17·6 mg/ml that was not different than that of controls (66·86±16·8 mg/ml). However, Dry0 cows exhibited high variation, different peak times (day) of IgG concentration including times that occurred both pre and post parturition. IgG mass of the Dry0 cows remained rather constant pre- and post partum and did not show the same declining mass following parturition that was shown for the Dry60 cows. The change in plasma P4 and Prl were shown to have no timing effect on colostrum IgG concentration.
Resumo:
The aim of this paper is to present a new class of smoothness testing strategies in the context of hp-adaptive refinements based on continuous Sobolev embeddings. In addition to deriving a modified form of the 1d smoothness indicators introduced in [26], they will be extended and applied to a higher dimensional framework. A few numerical experiments in the context of the hp-adaptive FEM for a linear elliptic PDE will be performed.
Resumo:
Large-scale tectonic processes introduce a range of crustal lithologies into the Earth's mantle. These lithologies have been implicated as sources of compositional heterogeneity in mantle-derived magmas. The model being explored here assumes the presence of widely dispersed fragments of residual eclogite (derived from recycled oceanic crust), stretched and stirred by convection in the mantle. Here we show with an experimental study that these residual eclogites continuously melt during upwelling of such heterogeneous mantle and we characterize the melting reactions and compositional changes in the residue minerals. The chemical exchange between these partial melts and more refractory peridotite leads to a variably metasomatised mantle. Re-melting of these metasomatised peridotite lithologies at given pressures and temperatures results in diverse melt compositions, which may contribute to the observed heterogeneity of oceanic basalt suites. We also show that heterogeneous upwelling mantle is subject to diverse local freezing, hybridization and carbonate-carbon-silicate redox reactions along a mantle adiabat.
Resumo:
BACKGROUND Reducing the fraction of transmissions during recent human immunodeficiency virus (HIV) infection is essential for the population-level success of "treatment as prevention". METHODS A phylogenetic tree was constructed with 19 604 Swiss sequences and 90 994 non-Swiss background sequences. Swiss transmission pairs were identified using 104 combinations of genetic distance (1%-2.5%) and bootstrap (50%-100%) thresholds, to examine the effect of those criteria. Monophyletic pairs were classified as recent or chronic transmission based on the time interval between estimated seroconversion dates. Logistic regression with adjustment for clinical and demographic characteristics was used to identify risk factors associated with transmission during recent or chronic infection. FINDINGS Seroconversion dates were estimated for 4079 patients on the phylogeny, and comprised between 71 (distance, 1%; bootstrap, 100%) to 378 transmission pairs (distance, 2.5%; bootstrap, 50%). We found that 43.7% (range, 41%-56%) of the transmissions occurred during the first year of infection. Stricter phylogenetic definition of transmission pairs was associated with higher recent-phase transmission fraction. Chronic-phase viral load area under the curve (adjusted odds ratio, 3; 95% confidence interval, 1.64-5.48) and time to antiretroviral therapy (ART) start (adjusted odds ratio 1.4/y; 1.11-1.77) were associated with chronic-phase transmission as opposed to recent transmission. Importantly, at least 14% of the chronic-phase transmission events occurred after the transmitter had interrupted ART. CONCLUSIONS We demonstrate a high fraction of transmission during recent HIV infection but also chronic transmissions after interruption of ART in Switzerland. Both represent key issues for treatment as prevention and underline the importance of early diagnosis and of early and continuous treatment.
Resumo:
Direct measurements of middle-atmospheric wind oscillations with periods between 5 and 50 days in the altitude range between mid-stratosphere (5 hPa) and upper mesosphere (0.02 hPa) have been made using a novel ground-based Doppler wind radiometer. The oscillations were not inferred from measurements of tracers, as the radiometer offers the unique capability of near-continuous horizontal wind profile measurements. Observations from four campaigns at high, mid and low latitudes with an average duration of 10 months have been analyzed. The dominant oscillation has mostly been found to lie in the extra-long period range (20–40 days), while the well-known atmospheric normal modes around 5, 10 and 16 days have also been observed. Comparisons of our results with ECMWF operational analysis model data revealed remarkably good agreement below 0.3 hPa but discrepancies above.
Resumo:
This article centers on the computational performance of the continuous and discontinuous Galerkin time stepping schemes for general first-order initial value problems in R n , with continuous nonlinearities. We briefly review a recent existence result for discrete solutions from [6], and provide a numerical comparison of the two time discretization methods.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT: The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation.
Resumo:
AIM Depending on intensity, exercise may induce a strong hormonal and metabolic response, including acid-base imbalances and changes in microcirculation, potentially interfering with the accuracy of continuous glucose monitoring (CGM). The present study aimed at comparing the accuracy of the Dexcom G4 Platinum (DG4P) CGM during continuous moderate and intermittent high-intensity exercise (IHE) in adults with type 1 diabetes (T1DM). METHODS Ten male individuals with well-controlled T1DM (HbA1c 7.0±0.6% [54±6mmol/mol]) inserted the DG4P sensor 2 days prior to a 90min cycling session (50% VO2peak) either with (IHE) or without (CONT) a 10s all-out sprint every 10min. Venous blood samples for reference glucose measurement were drawn every 10min and euglycemia (target 7mmol/l) was maintained using an oral glucose solution. Additionally, lactate and venous blood gas variables were determined. RESULTS Mean reference blood glucose was 7.6±0.2mmol/l during IHE and 6.7±0.2mmol/l during CONT (p<0.001). IHE resulted in significantly higher levels of lactate (7.3±0.5mmol/l vs. 2.6±0.3mmol/l, p<0.001), while pH values were significantly lower in the IHE group (7.27 vs. 7.38, p=0.001). Mean absolute relative difference (MARD) was 13.3±2.2% for IHE and 13.6±2.8% for CONT suggesting comparable accuracy (p=0.90). Using Clarke Error Grid Analysis, 100% of CGM values during both IHE and CONT were in zones A and B (IHE: 77% and 23%; CONT: 78% and 22%). CONCLUSIONS The present study revealed good and comparable accuracy of the DG4P CGM system during intermittent high intensity and continuous moderate intensity exercise, despite marked differences in metabolic conditions. This corroborates the clinical robustness of CGM under differing exercise conditions. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02068638.
Resumo:
BACKGROUND Continuous venovenous hemodialysis (CVVHD) may generate microemboli that cross the pulmonary circulation and reach the brain. The aim of the present study was to quantify (load per time interval) and qualify (gaseous vs. solid) cerebral microemboli (CME), detected as high-intensity transient signals, using transcranial Doppler ultrasound. MATERIALS AND METHODS Twenty intensive care unit (ICU group) patients requiring CVVHD were examined. CME were recorded in both middle cerebral arteries for 30 minutes during CVVHD and a CVVHD-free interval. Twenty additional patients, hospitalized for orthopedic surgery, served as a non-ICU control group. Statistical analyses were performed using the Mann-Whitney U test or the Wilcoxon matched-pairs signed-rank test, followed by Bonferroni corrections for multiple comparisons. RESULTS In the non-ICU group, 48 (14.5-169.5) (median [range]) gaseous CME were detected. In the ICU group, the 67.5 (14.5-588.5) gaseous CME detected during the CVVHD-free interval increased 5-fold to 344.5 (59-1019) during CVVHD (P<0.001). The number of solid CME was low in all groups (non-ICU group: 2 [0-5.5]; ICU group CVVHD-free interval: 1.5 [0-14.25]; ICU group during CVVHD: 7 [3-27.75]). CONCLUSIONS This observational pilot study shows that CVVHD was associated with a higher gaseous but not solid CME burden in critically ill patients. Although the differentiation between gaseous and solid CME remains challenging, our finding may support the hypothesis of microbubble generation in the CVVHD circuit and its transpulmonary translocation toward the intracranial circulation. Importantly, the impact of gaseous and solid CME generated during CVVHD on brain integrity of critically ill patients currently remains unknown and is highly debated.
Resumo:
BACKGROUND: HIV surveillance requires monitoring of new HIV diagnoses and differentiation of incident and older infections. In 2008, Switzerland implemented a system for monitoring incident HIV infections based on the results of a line immunoassay (Inno-Lia) mandatorily conducted for HIV confirmation and type differentiation (HIV-1, HIV-2) of all newly diagnosed patients. Based on this system, we assessed the proportion of incident HIV infection among newly diagnosed cases in Switzerland during 2008-2013. METHODS AND RESULTS: Inno-Lia antibody reaction patterns recorded in anonymous HIV notifications to the federal health authority were classified by 10 published algorithms into incident (up to 12 months) or older infections. Utilizing these data, annual incident infection estimates were obtained in two ways, (i) based on the diagnostic performance of the algorithms and utilizing the relationship 'incident = true incident + false incident', (ii) based on the window-periods of the algorithms and utilizing the relationship 'Prevalence = Incidence x Duration'. From 2008-2013, 3'851 HIV notifications were received. Adult HIV-1 infections amounted to 3'809 cases, and 3'636 of them (95.5%) contained Inno-Lia data. Incident infection totals calculated were similar for the performance- and window-based methods, amounting on average to 1'755 (95% confidence interval, 1588-1923) and 1'790 cases (95% CI, 1679-1900), respectively. More than half of these were among men who had sex with men. Both methods showed a continuous decline of annual incident infections 2008-2013, totaling -59.5% and -50.2%, respectively. The decline of incident infections continued even in 2012, when a 15% increase in HIV notifications had been observed. This increase was entirely due to older infections. Overall declines 2008-2013 were of similar extent among the major transmission groups. CONCLUSIONS: Inno-Lia based incident HIV-1 infection surveillance proved useful and reliable. It represents a free, additional public health benefit of the use of this relatively costly test for HIV confirmation and type differentiation.
Resumo:
A (1→3,1→4)‐β‐D‐glucan endohydrolase [(1→3,1→4)‐β‐glucanase, EC 3.2.1.73] was detected in wheat (Triticum aestivum L.) leaves by Western analyses and activity measurements. This enzyme is able to degrade the (1→3,1→4)‐β‐glucans present in the cell walls of cereals and other grass species. In wheat, enzyme levels clearly increased during leaf development, reaching maximum values at full expansion and then decreasing upon leaf ageing. To test whether the abundance of (1→3,1→4)‐β‐glucanase might be controlled by the carbohydrate status, environmental and nutritional conditions capable of altering the leaf soluble sugar contents were used. Both the activity and enzyme protein levels rapidly and markedly increased when mature leaves were depleted of sugars (e.g. during extended dark periods), whereas elevated carbohydrate contents (e.g. following continuous illumination, glucose supply in the dark or nitrogen deficiency during a light/dark cycle) caused a rapid decrease in (1→3,1→4)‐β‐glucanase abundance or prevented its accumulation in the leaves. The physiological significance of (1→3,1→4)‐β‐glucanase accumulation under sugar depletion remains to be elucidated.
Resumo:
The Everglades Depth Estimation Network (EDEN) is an integrated network of realtime water-level monitoring, ground-elevation modeling, and water-surface modeling that provides scientists and managers with current (2000-present), online water-stage and water-depth information for the entire freshwater portion of the Greater Everglades. Continuous daily spatial interpolations of the EDEN network stage data are presented on grid with 400-square-meter spacing. EDEN offers a consistent and documented dataset that can be used by scientists and managers to: (1) guide large-scale field operations, (2) integrate hydrologic and ecological responses, and (3) support biological and ecological assessments that measure ecosystem responses to the implementation of the Comprehensive Everglades Restoration Plan (CERP) (U.S. Army Corps of Engineers, 1999). The target users are biologists and ecologists examining trophic level responses to hydrodynamic changes in the Everglades. The first objective of this report is to validate the spatially continuous EDEN water-surface model for the Everglades, Florida developed by Pearlstine et al. (2007) by using an independent field-measured data-set. The second objective is to demonstrate two applications of the EDEN water-surface model: to estimate site-specific ground elevation by using the validated EDEN water-surface model and observed water depth data; and to create water-depth hydrographs for tree islands. We found that there are no statistically significant differences between model-predicted and field-observed water-stage data in both southern Water Conservation Area (WCA) 3A and WCA 3B. Tree island elevations were derived by subtracting field water-depth measurements from the predicted EDEN water-surface. Water-depth hydrographs were then computed by subtracting tree island elevations from the EDEN water stage. Overall, the model is reliable by a root mean square error (RMSE) of 3.31 cm. By region, the RMSE is 2.49 cm and 7.77 cm in WCA 3A and 3B, respectively. This new landscape-scale hydrological model has wide applications for ongoing research and management efforts that are vital to restoration of the Florida Everglades. The accurate, high-resolution hydrological data, generated over broad spatial and temporal scales by the EDEN model, provides a previously missing key to understanding the habitat requirements and linkages among native and invasive populations, including fish, wildlife, wading birds, and plants. The EDEN model is a powerful tool that could be adapted for other ecosystem-scale restoration and management programs worldwide.