940 resultados para Computer system
Resumo:
In this paper the method of ultraspherical polynomial approximation is applied to study the steady-state response in forced oscillations of a third-order non-linear system. The non-linear function is expanded in ultraspherical polynomials and the expansion is restricted to the linear term. The equation for the response curve is obtained by using the linearized equation and the results are presented graphically. The agreement between the approximate solution and the analog computer solution is satisfactory. The problem of stability is not dealt with in this paper.
Resumo:
This paper presents a simple hybrid computer technique to study the transient behaviour of queueing systems. This method is superior to stand-alone analog or digital solution because the hardware requirement is excessive for analog technique whereas computation time is appreciable in the latter case. By using a hybrid computer one can share the analog hardware thus requiring fewer integrators. The digital processor can store the values, play them back at required time instants and change the coefficients of differential equations. By speeding up the integration on the analog computer it is feasible to solve a large number of these equations very fast. Hybrid simulation is even superior to the analytic technique because in the latter case it is difficult to solve time-varying differential equations.
Resumo:
The Printed Circuit Board (PCB) layout design is one of the most important and time consuming phases during equipment design process in all electronic industries. This paper is concerned with the development and implementation of a computer aided PCB design package. A set of programs which operate on a description of the circuit supplied by the user in the form of a data file and subsequently design the layout of a double-sided PCB has been developed. The algorithms used for the design of the PCB optimise the board area and the length of copper tracks used for the interconnections. The output of the package is the layout drawing of the PCB, drawn on a CALCOMP hard copy plotter and a Tektronix 4012 storage graphics display terminal. The routing density (the board area required for one component) achieved by this package is typically 0.8 sq. inch per IC. The package is implemented on a DEC 1090 system in Pascal and FORTRAN and SIGN(1) graphics package is used for display generation.
Resumo:
Information visualization is a process of constructing a visual presentation of abstract quantitative data. The characteristics of visual perception enable humans to recognize patterns, trends and anomalies inherent in the data with little effort in a visual display. Such properties of the data are likely to be missed in a purely text-based presentation. Visualizations are therefore widely used in contemporary business decision support systems. Visual user interfaces called dashboards are tools for reporting the status of a company and its business environment to facilitate business intelligence (BI) and performance management activities. In this study, we examine the research on the principles of human visual perception and information visualization as well as the application of visualization in a business decision support system. A review of current BI software products reveals that the visualizations included in them are often quite ineffective in communicating important information. Based on the principles of visual perception and information visualization, we summarize a set of design guidelines for creating effective visual reporting interfaces.
Resumo:
The quaternary system Sb1bTe1bBi1bSe with small amounts of suitable dopants is of interest for the manufacture of thermoelectric modules which exhibit the Peltier and Seebeck effects. This property could be useful in the production of energy from the thermoelectric effect. Other substances are bismuth telluride (Bi2Te3) and Sb1bTe1bBi and compounds such as ZnIn2Se4. In the present paper the application of computer programs such as MIGAP of Kaufman is used to indicate the stability of the ternary limits of Sb1bTe1bBi within the temperature ranges of interest, namely 273 K to 300 K.
Resumo:
Tangible physical systems are more intuitive than Intangible virtual Systems. Mixed reality systems are considered as an alternative to virtual systems, bringing advantages of tangible systems into an interaction. However, past research has mainly focussed on technical aspects of incorporating pervasive-ness and immersive-ness in the virtual systems. This paper reports on an empirical study of intuitive Interaction in a Mixed Reality game system for children and the design aspects that could facilitate intuitive Interaction in such systems. A related samples Friedman’s test showed that the Mixed Reality game system demonstrated more intuitive interactions than non-intuitive Interactions. A linear regression analysis further established that the variation in intuitive Interaction in the Mixed Reality system could be statistically significantly explained primarily by physical affordances offered by the Mixed Reality system and to a lesser extent by the perceived affordances in the system. Design guidelines to develop intuitive Mixed Reality systems are discussed. These guidelines should allow designers to exploit the wonders of advances in technology and at the same time allow users to directly interact with the physical real world. This will allow users to access maximal physical affordances, which are primary contributors to intuitive interaction in Tangible and Mixed Reality systems.
Resumo:
With the development of wearable and mobile computing technology, more and more people start using sleep-tracking tools to collect personal sleep data on a daily basis aiming at understanding and improving their sleep. While sleep quality is influenced by many factors in a person’s lifestyle context, such as exercise, diet and steps walked, existing tools simply visualize sleep data per se on a dashboard rather than analyse those data in combination with contextual factors. Hence many people find it difficult to make sense of their sleep data. In this paper, we present a cloud-based intelligent computing system named SleepExplorer that incorporates sleep domain knowledge and association rule mining for automated analysis on personal sleep data in light of contextual factors. Experiments show that the same contextual factors can play a distinct role in sleep of different people, and SleepExplorer could help users discover factors that are most relevant to their personal sleep.
Resumo:
This report summarises the development of an Unmanned Aerial System and an integrated Wireless Sensor Network (WSN), suitable for the real world application in remote sensing tasks. Several aspects are discussed and analysed to provide improvements in flight duration, performance and mobility of the UAV, while ensuring the accuracy and range of data from the wireless sensor system.
Resumo:
Network Interfaces (NIs) are used in Multiprocessor System-on-Chips (MPSoCs) to connect CPUs to a packet switched Network-on-Chip. In this work we introduce a new NI architecture for our hierarchical CoreVA-MPSoC. The CoreVA-MPSoC targets streaming applications in embedded systems. The main contribution of this paper is a system-level analysis of different NI configurations, considering both software and hardware costs for NoC communication. Different configurations of the NI are compared using a benchmark suite of 10 streaming applications. The best performing NI configuration shows an average speedup of 20 for a CoreVA-MPSoC with 32 CPUs compared to a single CPU. Furthermore, we present physical implementation results using a 28 nm FD-SOI standard cell technology. A hierarchical MPSoC with 8 CPU clusters and 4 CPUs in each cluster running at 800MHz requires an area of 4.56mm2.
Resumo:
This paper presents a low cost but high resolution retinal image acquisition system of the human eye. The images acquired by a CMOS image sensor are communicated through the Universal Serial Bus (USB) interface to a personal computer for viewing and further processing. The image acquisition time was estimated to be 2.5 seconds. This system can also be used in telemedicine applications.
Resumo:
Fusion power is an appealing source of clean and abundant energy. The radiation resistance of reactor materials is one of the greatest obstacles on the path towards commercial fusion power. These materials are subject to a harsh radiation environment, and cannot fail mechanically or contaminate the fusion plasma. Moreover, for a power plant to be economically viable, the reactor materials must withstand long operation times, with little maintenance. The fusion reactor materials will contain hydrogen and helium, due to deposition from the plasma and nuclear reactions because of energetic neutron irradiation. The first wall divertor materials, carbon and tungsten in existing and planned test reactors, will be subject to intense bombardment of low energy deuterium and helium, which erodes and modifies the surface. All reactor materials, including the structural steel, will suffer irradiation of high energy neutrons, causing displacement cascade damage. Molecular dynamics simulation is a valuable tool for studying irradiation phenomena, such as surface bombardment and the onset of primary damage due to displacement cascades. The governing mechanisms are on the atomic level, and hence not easily studied experimentally. In order to model materials, interatomic potentials are needed to describe the interaction between the atoms. In this thesis, new interatomic potentials were developed for the tungsten-carbon-hydrogen system and for iron-helium and chromium-helium. Thus, the study of previously inaccessible systems was made possible, in particular the effect of H and He on radiation damage. The potentials were based on experimental and ab initio data from the literature, as well as density-functional theory calculations performed in this work. As a model for ferritic steel, iron-chromium with 10% Cr was studied. The difference between Fe and FeCr was shown to be negligible for threshold displacement energies. The properties of small He and He-vacancy clusters in Fe and FeCr were also investigated. The clusters were found to be more mobile and dissociate more rapidly than previously assumed, and the effect of Cr was small. The primary damage formed by displacement cascades was found to be heavily influenced by the presence of He, both in FeCr and W. Many important issues with fusion reactor materials remain poorly understood, and will require a huge effort by the international community. The development of potential models for new materials and the simulations performed in this thesis reveal many interesting features, but also serve as a platform for further studies.
Resumo:
Instability in conventional haptic rendering destroys the perception of rigid objects in virtual environments. Inherent limitations in the conventional haptic loop restrict the maximum stiffness that can be rendered. In this paper we present a method to render virtual walls that are much stiffer than those achieved by conventional techniques. By removing the conventional digital haptic loop and replacing it with a part-continuous and part-discrete time hybrid haptic loop, we were able to render stiffer walls. The control loop is implemented as a combinational logic circuit on an field-programmable gate array. We compared the performance of the conventional haptic loop and our hybrid haptic loop on the same haptic device, and present mathematical analysis to show the limit of stability of our device. Our hybrid method removes the computer-intensive haptic loop from the CPU-this can free a significant amount of resources that can be used for other purposes such as graphical rendering and physics modeling. It is our hope that, in the future, similar designs will lead to a haptics processing unit (HPU).
Resumo:
This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. The control system designed is referred to as Boarding Control System (BCS). The performance of this system is investigated for a specific wind-farm service vessel—The Wave Craft. On a SES, the pressurized air cushion supports the majority of the weight of the vessel. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. Results are given through simulation, model- and full-scale experimental testing.
Resumo:
Multimedia mining primarily involves, information analysis and retrieval based on implicit knowledge. The ever increasing digital image databases on the Internet has created a need for using multimedia mining on these databases for effective and efficient retrieval of images. Contents of an image can be expressed in different features such as Shape, Texture and Intensity-distribution(STI). Content Based Image Retrieval(CBIR) is an efficient retrieval of relevant images from large databases based on features extracted from the image. Most of the existing systems either concentrate on a single representation of all features or linear combination of these features. The paper proposes a CBIR System named STIRF (Shape, Texture, Intensity-distribution with Relevance Feedback) that uses a neural network for nonlinear combination of the heterogenous STI features. Further the system is self-adaptable to different applications and users based upon relevance feedback. Prior to retrieval of relevant images, each feature is first clustered independent of the other in its own space and this helps in matching of similar images. Testing the system on a database of images with varied contents and intensive backgrounds showed good results with most relevant images being retrieved for a image query. The system showed better and more robust performance compared to existing CBIR systems