926 resultados para Cationic surfactants
Resumo:
Stable lipid film was made by casting lipid in chloroform onto a glassy carbon electrode. This model of a biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by dopamine. After this electrode had been immersed in dopamine solution for 10 h, it was found that some dopamine had been incorporated in the film. The cyclic voltammogram was obtained for the oxidation of 2.0 X 10(-3) mol 1(-1) NADH with dopamine incorporated in the films. All electrochemical experiments were performed in 0.005 mol 1(-1) phosphate buffer (pH 7.0) containing 0.1 mol 1(-1) NaCl without oxygen. The oxidation current increased gradually with successive sweeps and reached steady state. It was a different phenomenon from previous results. The anodic overpotential was reduced by about 130 mV compared with that obtained at a bare glassy carbon electrode. The diffusion coefficient for 2.0 X 10(-3) mol 1(-1) NADH was 6.7 X 10(-6) cm(2) s(-1). (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Ultrasonic absorption coefficients were measured for butylamine in heavy water (D2O) in the frequency range from 0.8 to 220 MHz and at concentrations from 0.0278 to 2.5170 mol dm(-3) at 25 degrees C; two kinds of relaxation processes were observed. One was found in relatively dilute solutions (up to 0.5 mol dm(-3)), which was attributed to the hydrolysis of butylamine. In order to compare the results, absorption measurements were also carried out in light water (H2O). The rate and thermodynamic parameters were determined from the concentration dependence of the relaxation frequency and the maximum absorption per wavelength. The isotope effects on the diffusion-controlled reaction were estimated and the stability of the intermediate of the hydrolysis was considered while comparing it with the results for propylamine in H2O and D2O. Another relaxation process was observed at concentrations greater than 1 mol dm(-3) in D2O. In order to examine the solution characteristics, proton NMR measurements for butylamine were also carried out in D2O. The chemical shifts for the gamma- and delta-proton in butylamine molecule indicate the existence of an aggregate. From profiles of the concentration dependence of the relaxation frequency and the maximum absorption per wavelength of sound absorption, the source of the relaxation was attributed to an association-dissociation reaction, perhaps, associated with a hydrophobic interaction. The aggregation number, the forward and reverse rate constants and the standard volume change of the reaction were determined. It was concluded from a comparison with the results in H2O that the hydrophobic interaction of butylamine in D2O is stronger than that in H2O. Also, the isotope effect on this reaction was interpreted in terms of the solvent structure.
Resumo:
Novel high spin tri-, tetra-, pentaradicals, composed of triazine coupling units and cationic amino radical spin centers (+ . NH) under various configurations and linkages, are predicted from AM1-CI calculations. It is found that for charged planar multiradicals the stability of high spin ground states depends on both the molecular configuration and the number of end groups. Generally, cyclic 1,3-bridged charged multiradicals (S less than or equal to 5/2) possess more stable high spin ground states than their isomers under the branched 1,3,5,-bridged configuration. Therefore, it is suggested that in the design of planar high spin molecules with stable high spin ground states, less end groups and all the supposed spin centers and/or the coupling units should be under the same structural situation. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A general strategy has been developed for fabrication of ultrathin monolayer and multilayer composite films composed of nearly all kinds of polyoxometalates (POMs), including isopolyanions (IPAs), and heteropolyanions (HPAs). It involves stepwise adsorption between the anionic POMs and a cationic polymer on alkanethiol (cysteamine and 3-mercaptopropionic acid) self-assembled monolayers (SAMs) based on electrostatic interaction. Here a Keggin-type HPA SiMo11VO405- was chosen as a main representative to elucidate, in detail, the fabrication and characterization of the as-prepared composite films. A novel electrochemical growth method we developed for film formation involves cyclic potential sweeps over a suitable potential range in modifier solutions. It was comparatively studied with a commonly used method of immersion growth, i.e., alternately dipping a substrate into modifier solutions. Growth processes and structural characteristics of the composite films are characterized in detail by cyclic voltammetry, UV-vis spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), micro-Fourier transform infrared reflection-absorption spectroscopy (FTIR-RA), and electrochemical quartz crystal microbalance (EQCM). The electrochemical growth is proven to be more advantageous than the immersion growth. The composite films exhibit well-defined surface waves characteristic of the HPAs' redox reactions. In addition, the composite films by the electrochemical growth show a uniform structure and an excellent stability. Ion motions accompanying the redox processes of SiMo11VO405- in multilayer films are examined by in situ time-resolved EQCM and some results are first reported. The strategy used here has been successfully popularized to IPAs as well as other HPAs no matter what structure and composition they have.
Resumo:
We here present a versatile process for the preparation of maghemite/polyaniline (gamma-Fe2O3/ PAn) nanocomposite films with macroscopic processibility, electrical conductivity, and magnetic susceptibility. The gamma-Fe2O3 nanoparticles are coated and the PAn chains are doped by anionic surfactants of omega-methoxypoly(ethylene glycol) phosphate (PEOPA), 4-dodecylbenzenesulfonic acid (DBSA), and 10-camphorsulfonic acid (CSA). Both the coated gamma-Fe2O3 and the doped PAn are soluble in common organic solvents, and casting of the homogeneous solutions gives free-standing nanocomposite films with gamma-Fe2O3 contents up to similar to 50 wt %. The morphology of the gamma-Fe2O3 nanoparticles are characterized by transmission electron microscopy, UV-vis spectroscopy, and X-ray diffractometry. The gamma-Fe2O3/PAn films prepared from chloroform/m-cresol solutions of DBSA-coated gamma-Fe2O3 and CSA-doped PAn are conductive (sigma = 82-237 S/cm) and superpapamagnetic, exhibiting no hysteresis at room temperature. The zero-field-cooled magnetization experiment reveals that the nanocomposite containing 20.8 wt % gamma-Fe2O3 has a blocking temperature (T-b) in the temperature region of 63-83 K.
Resumo:
By mechanism-transformation (anionic --> cationic) poly(styrene-6-2-ethyl-2-oxazoline) diblock copolymer, PS-b-PEOx, was synthesized in two steps. The first step is the polymerization of styrene block capped with ethylene oxide and its tosylation; the second step is the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. The products were thoroughly characterized by various methods, such as H-1-NMR, IR, DMA, TEM and SAXS. The results show that the copolymer obtained possesses high molecular weight and narrow molecular weight distribution.
Resumo:
A successful micronization of water-insoluble poly(epsilon-caprolactone) (PCL) into narrowly distributed nanoparticles stable in water has not only enabled us to study the enzymatic biodegradation of PCL in water at 25 degrees C by a combination of static and dynamic laser light scattering (LLS), but also to shorten the biodegradation time by a factor of more than 10(3) compared with using a thin PCL film, i.e. a 1 week conventional experiment becomes a 4 min one. The time-average scattering intensity decreased linearly. It was interesting to find that the decrease of the scattering intensity was not accompanied by a decrease of the average size of the PCL nanoparticles, indicating that the enzyme, Lipase Pseudomonas (PS), ''eats'' the PCL nanoparticles one-by-one, so that the biodegradation rate is determined mainly by the: enzyme concentration. Moreover, we found that using anionic sodium lauryl sulphate instead of cationic hexadecyltrimethylammonium bromide as surfactant in the micronization can prevent the biodegradation, suggesting that the biodegradation involves two essential steps: the adsorption of slightly negatively charged Lipase PS onto the PCL nanoparticles and the interaction between Lipase PS and PCL. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The use of crosslinked poly(styrene-co-4-vinylpyridine) having functional groups as the support for zirconocene catalysts in ethylene polymerization was studied. Several factors affecting the activity of the catalysts were examined. Conditions like time, temperature, Al/N (molar ratio), Al/Zr (molar ratio), and the mode of feeding were found having no significant influence on the activity of the catalysts, while the state of the supports had a great effect on the catalytic behavior. The activity of the catalysts sharply increased with either the degree of crosslinking or the content of 4-vinylpyridine in the support. Via aluminum compounds, AlR3 or methylaluminoxane (MAO), zirconocene was attached on the surface of the support. IR spectra showed an intensified and shifted absorption bands of C-N in the pyridine ring, and a new absorption band appeared at about 730 cm(-1) indicating a stable bond Al-N formed in the polymer-supported catalysts. The formation of cationic active centers was hypothesized and the performance of the polymer-supported zirconocene was discussed as well. (C) 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 37-46, 1999.
Resumo:
By mechanism-transformation (anionic --> cationic) polymerization, diblock copolymer of butadiene and 2-ethyl-2-oxazoline (PBd-b-PEOx) was synthesized in two steps. The first step is the polymerization of butadiene block capped with ethylene oxide and its tosylation; the second step is the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. The products were characterized by various methods, such as IR, (HNMR)-H-1, DMA, TEM and SAXS. The results show that the obtained copolymers possess high molecular weight and narrow molecular weighs distribution, and that the content of 1,4-structure was controllable.
Resumo:
The binding behavior of two cationic dyes, brilliant cresyl blue (BCB) and methylene green (MG) to calf thymus DNA was studied by spectrophotometric and voltammetric methods. A red shift of the adsorption spectra and hypochromism accompany the binding of BCB and MG to calf thymus DNA. In 5 x 10(-2) mol dm(-3) NaCl, 5 x 10(-3) mol dm(-3) tris-HCl pH 6.87 buffer solution, the apparent binding constants are: K-BCB+ 3.0 x 10(4)M(-1) (N = 4.13) and K-MG+ = 8.8 x 10(4)M(-1) (n = 4.44). Electrochemical studies show that the formal potentials shift negatively upon addition of DNA, indicating that the oxidized forms of the dyes have stronger affinity to DNA than the reduced ones. K-BCB+/K-BCBH and K-MG+/K-MGH are evaluated to be 10.39 and 7.04. respectively. Our investigation suggests that the two cationic dyes interact with DNA predominantly via electrostatic interaction.
Resumo:
The cyclization process of a new organosulfur reaction was studied by the MNDO (UHF) method. The first reaction path was assumed to be via the organosulfur radical intermediate, the second via the ionic (cationic and anionic) intermediates. The dehydroxylation process was assumed to occur with the synergistic cyclization. The results obtained indicate that the potential energy barrier of the first reaction path was about 102 kcal mol(-1), and although the formation of the ionic intermediate is comparatively difficult, the potential energy barrier of the second path is comparable to the first. The sequential reaction path via the radical intermediate, i.e. first cyclization, then dehydroxylation, was investigated for comparison. The cyclization reaction was found to be the thermodynamically favored process, while the ensuing dehydroxylation process was found to have a potential energy barrier of about 62 kcal mol(-1).
Resumo:
Asymmetric polymerization could be induced by an already formed optically active living prepolymer with one-handed screw sense helix conformation. The usually formed anionic active centre on the prepolymer could be changed to cationic, radical and even of Ziegler-Natta type. These living prepolymers with various kinds of active centre were all effective to induce a consequent asymmetric polymerization of a monomer which may be other than that in the prepolymer, to afford an optically active helical chain with the same screw sense as that of the prepolymer. Eight monomers have been used in the work. Optical rotation, circular dichroism and gelpermeation chromatography have been taken to prove the helix-induced asymmetric polymerization.
Resumo:
The adsorption of cationic surfactant cetylpyridinium bromide (CPB) on a glassy carbon (GC) electrode surface has been studied by spectroelectrochemistry with a long optical path length thin-layer cell (LOPTLC) for the first time. A fine adsorption isotherm of CPB molecules from an aqueous solution containing 0.10 M KBr has been obtained over the range of (1.00-8.00) x 10(-5) M. From theoretical calculation and experimental data, adsorption of CPB on the GC electrode surface shows four distinct orientations and three large orientation transitions. Compared with the ordinary isotherm, the differential isotherm is more characteristic and would be suitable for the study of orientation transitions of organic compounds. With a theoretical treatment of the adsorption isotherm, four orientations of adsorbed CPB on a GC electrode surface coincide with the Frumkin-Langmuir type. From adsorption parameters the Frumkin-Langmuir equations, the adsorption free energy and, therefore, the equilibrium constants of orientation transitions of the CPB molecule can be obtained.
Resumo:
Acetonitrile is a weakly donating ligand. The cationic compounds of CH_3CN-coordinated transition metal are versatile homogeneous catalysts for the polymerization and isomerization of olefins and cycloolefins. The cationic compound of lanthanide[Eu(CH_3·CN)_3(BF_4)_3]_n was prepared from the oxidation of Eu with NOBF_4 in CH_3CN by Thomas in 1986. It was found that [Eu(CH_3CN)_3(BF_4)_3]_n can catalyze the polymerization of styrene cyclohexadiene and other olefins. However, there is no information about...
Resumo:
The thermodynamics of micellization for polystyrene-b-poly(ethylene/propylene) two-Mock copolymer(SEP) in the mixtures of n-octane and benzene with different proportions have been studied in this paper, The critical micelle concentrations(GMC) of micelle solutions at various temperatures were measured by lost angle laser light scattering photometer(LALLS), The results shove that the micellization process of nonpolar copolymer SEP in hydrocarbon solvents ire exothermal, and the entropy change is negative, In contrast, far ordinary surfactants in water, it is the enthalpy contribution to the energy change which is responsible for micellization.