998 resultados para Catalytic Behavior
Resumo:
Peer-reviewed
Resumo:
Peer-reviewed
Resumo:
Peer-reviewed
Resumo:
Satellite transmitters and geographic-positioning-system devices often add substantial mass to birds to which they are attached. Studies on the effects of such instruments have focused on indirect measures, whereas the direct influence of extra mass on pelagic behavior is poorly known. We used 2.5-g geolocators to investigate the effect of extra mass on the pelagic behavior of Cory's Shearwaters (Calonectris diomedea) by comparing the traits of a single foraging trip among a group carrying 30-g weights, a group carrying 60-g weights, and a control group. The weights were attached to the birds' backs using typical techniques for attaching satellite transmitters to seabirds. The extra mass increased the duration of the birds' trips and decreased their foraging efficiency and mass gained at sea. These indirect effects may be related to foraging traits: weighted birds showed a greater search effort than control birds, traveled greater distances, covered a greater foraging area, and increased the maximum foraging range. Furthermore, the time spent on the sea surface at night was greater for weighted than for control groups, which showed that the extra mass also affected activity patterns. Our results underline the need to quantify the effects of monitoring equipment commonly used to study the pelagic behavior of seabirds. We suggest that geolocators can be used to obtain control data on foraging-trip movements and activity patterns.
Resumo:
Nowadays the Finnish-Russian electric energy interaction is carried out through the back-to-back DC Vyborg substation and several power plants working synchronously with Finnish power system. Constant amount of energy flows in one direction — from Russia to Finland. But the process of electricity market development in Russian energy system makes the new possibilities of electrical cooperation available. The goal of master's thesis is to analyze the current state and possible evolution trends of North-West Russian system in relation with future possible change in power flow between Russia and Finland. The research is done by modelling the market of North-West Russia and examination of technical grid restrictions. The operational market models of North-West region of Russia for the years 2008 and 2015 were created during the research process. The description of prepared market models together with modelling results and their analysis are shown in the work. The description of power flow study process and results are also presented.
Resumo:
The objective of the research was to study the influence of temperature, oxygen pressure, catalysts loading and initial COD concentration of debarking wastewater on the pollutants during the catalytic oxidation. More importantly, how the addition of catalyst affects the wet oxidation process. The whole work was divided into two main sections, theoretical and experimental parts. The theoretical part reviews the pulp and paper industry from wood processing to paper production as well as operations that generate wastes. Treatment methods applicable for industrial pulp and paper mill effluents were also discussed. Wet oxidation and catalytic wet oxidation processes including mechanism, reactions, kinetics and industrial applications were previewed. In the experimental part, catalytic wet oxidation process were studied at 120-180°C, 0-10 bar oxygen pressure, 0-1 g/L catalyst concentration and 1000-3000 mg/L initial COD concentration. Responses, such as Chemical oxygen demand (COD), Total organic carbon (TOC), colour, lignin/tannin, Biochemical oxygen demand (BOD) and pH were measured. In the experiment, the best conditions occurred at 180°C, 10 bar, l g/L catalyst concentration and 3000mg/L initial COD. At these conditions; 74% COD, 97% lignin/tannin, 54% TOC, 90% colour were removed from the wastewater. pH was greatly reduced from 7 to 4.6. Lignin/tannin was removed most. Lignin/tannin showed linear dependency with colour during oxidation. Temperature made the most impact in reducing contaminants in debarked wastewater.
Resumo:
Transcription factors play a crucial role in the regulation of cell behavior by modulating gene expression profiles. Previous studies have described a dual role for the AP-1 family transcription factor c-Jun in the regulation of cellular fate. In various cell types weak and transient activations of c-Jun N-terminal kinase (JNK) and c-Jun appear to contribute to proliferation and survival, whereas strong and prolonged activation of JNK and c-Jun result in apoptosis. These opposite roles played by c-Jun are cell type specific and the molecular mechanisms defining these antonymous c-Jun-mediated responses remain incompletely understood. c-Jun activity in transformed cells is regulated by signalling cascades downstream of oncoproteins such as Ras and Raf. In addition, the pro-proliferative role and the survival promoting function for c-Jun has been described in various cancer models. Furthermore, c-Jun was described to be overexpressed in different cancer types. However, the molecular mechanisms by which c-Jun exerts these oncogenic functions are not all clearly established. Therefore it is of primary interest to further identify molecular mechanisms and functions for c-Jun in cancer. Regulation of gene expression is tightly dependent on accurate protein-protein interactions. Therefore, co-factors for c-Jun may define the functions for c-Jun in cancer. Identification of protein-protein interactions promoting cancer may provide novel possibilities for cancer treatment. In this study, we show that DNA topoisomerase I (TopoI) is a transcriptional co-factor for c-Jun. Moreover, c-Jun and TopoI together promote expression of epidermal growth factor receptor (EGFR) in cancer cells. We also show that the clinically used TopoI inhibitor topotecan reduces EGFR expression. Importantly, the effect of TopoI on EGFR transcription was shown to depend on c-Jun as Jun-/- cells or cells treated with JNK inhibitor SP600125 are resistant to topotecan treatment both in regulation of EGFR expression and cell proliferation. Moreover, c-Jun regulates the nucleolar localization and the function of the ribonucleic acid (RNA) helicase DDX21, a previously identified member of c-Jun protein complex. In addition, c-Jun stimulates rRNA processing by supporting DDX21 rRNA binding. Finally, this study characterizes a DDX21 dependent expression of cyclin dependent kinase (Cdk) 6, a correlation of DDX21 expression with prostate cancer progression and a substrate binding dependency of DDX21 nucleolar localization in prostate cancer cells. Taken together, the results of this study validate the c-Jun-TopoI interaction and precise the c-Jun-DDX21 interaction. Moreover, these results show the importance for protein-protein interaction in the regulation of their cellular functions in cancer cell behavior. Finally, the results presented here disclose new exciting therapeutic opportunities for cancer treatment.
Resumo:
This paper is a literature review which describes the construction of state of the art of permanent magnet generators and motors constructing and discusses the current and possible application of these machines in industry. Permanent magnet machines are a well-know class of rotating and linear electric machines used for many years in industrial applications. A particular interest for permanent magnet generators is connected with wind mills, which seem to be becoming increasingly popular nowadays. Geared and direct-driven permanent magnet generators are described. A classification of direct-driven permanent magnet generators is given. Design aspects of permanent magnet generators are presented. Permanent magnet generators for wind turbines designs are highlighted. Dynamics and vibration problems of permanent magnet generators covered in literature are presented. The application of the Finite Element Method for mechanical problems solution in the field of permanent magnet generators is discussed.
Resumo:
In this thesis, "Human behavior on the Internet", the human anxiety is conceptualized. The following questions have guided the writing of the thesis: How humans behave with the Internet technology? What goes in their mind? What kinds of behaviors are shown while using the Internet? What is the role of the content on the Internet and especially what are the types of anxiety behavior on the Internet? By conceptualization this thesis aims to provide a model for studying whether humans show signs of less or exacerbated anxiety while using the Internet. The empirical part of this thesis was built on new developed model and user study that utilizes that model. For the user study, the target users were divided into two groups based on their skill level. The user study used both qualitative and quantitative research methods. The qualitative research was conducted using interviews and observational analysis. The quantitative research was conducted in three iterations by using questionnaires and surveys. These results suggest that the significance of human on using technology would be integral part of such a study. The study also suggests that Internet has lulled humans with the sense of dependency to greater extent. In particular, the results identified seven main areas of human anxiety. These forms of anxiety require further studies to encompass human anxiety in more detail.
Resumo:
This article presents the results of a study of the efficiency of silanation process of calcium phosphate glasses particles and its effect on the bioactivity behavior of glasspoly( methyl methacrylate) (PMMA) composites. Two different calcium phosphate glasses: 44.5CaO-44.5P2O5-11Na2O (BV11) and 44.5CaO-44.5P2O5-6Na2O-5TiO2 (G5) were synthesized and treated with silane coupling agent. The glasses obtained were characterized by Microprobe and BET while the efficiency of silanation process was determined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Thermal Analysis (DTA and TG)techniques. The content of coupling agent chemically tightly bond to the silanated glasses ascended to 1.69 6 0.02 wt % for BV11sil glass and 0.93 6 0.01 wt % for G5sil glass. The in vitro bioactivity test carried out in Simulated Body Fluid (SBF) revealed certain bioactive performance with the use of both silanated glasses in a 30% (by weight) as filler of the PMMA composites because of a superficial deposition of an apatite-like layer with low content of CO3 22 and HPO4 22 in its structure after soaking for 30 days occurred. VC 2013 Wiley Periodicals,Inc. J Biomed Mater Res Part B: Appl Biomater 00B: 000-000, 2013.
Resumo:
Cyclic voltammetry was used to study 3,4-dihydroxybenzaldehyde (3,4-DHB) electropolymerization processes on carbon paste electrodes. The characteristics of the electropolymerized films were highly dependent on pH, anodic switching potential, scan rate, 3,4-DHB concentrations and number of cycles. Film stability was determined in citrate/phosphate buffer solutions at the same pH used during the electropolymerization process. The best conditions to prepare carbon paste modified electrodes were pH 7.8; 0.0 <= Eapl <= 0.25 V; 10 mV s-1; 0.25 mmol L-1 3,4-DHB and 10 scans. These carbon paste modified electrodes were used for NADH catalytic detection at 0.23 V in the range 0.015 <= [NADH] <= 0.21 mmol L-1. Experimental data were used to propose a mechanism for the 3,4--DHB electropolymerization processes, which involves initial phenoxyl radical formation.
When culture does (not) matter: role models and self-efficacy as drivers of entrepreneurial behavior
Resumo:
The correlation between facets of national culture and startup activities has received confirmation in empirical research while many mechanisms behind the correlation remain unclear. We study the interplay between the individualism-collectivism orientation of national culture, the incidence of entrepreneurial role models and selfefficacy understood as the perception of possessing relevant skills and knowledge to become a successful entrepreneur. We find that exposure to entrepreneurial role models offsets self-efficacy as a driver of entrepreneurial intentions. The effect is magnified by the individualistic character of the national culture. Key words: entrepreneurial intentions, role models, self-efficacy, individualism, multilevel regressions
Resumo:
The degradation of the catalytic filaments is the main factor limiting the industrial implementation of the hot wire chemical vapor deposition (HWCVD) technique. Up to now, no solution has been found to protect the catalytic filaments used in HWCVD without compromising their catalytic activity. Probably, the definitive solution relies on the automatic replacement of the catalytic filaments. In this work, the results of the validation tests of a new apparatus for the automatic replacement of the catalytic filaments are reported. The functionalities of the different parts have been validated using a 0.2 mm diameter tungsten filament under uc-Si:H deposition conditions.
Resumo:
The conversion of glycerol in supercritical water (SCW) was studied at 510-550 °C and a pressure of 350 bars using both a bed of inert and non-porous ZrO2 particles (hydrothermal experiments), and a bed of a 1% Ru/ZrO2 catalyst. Experiments were conducted with a glycerol concentration of 5 wt% in a continuous isothermal fixed-bed reactor at a residence time between 2 and 10 s. Hydrothermolysis of glycerol formed water-soluble products such as acetaldehyde, acetic acid, hydroxyacetone and acrolein, and gases like H2, CO and CO2. The catalyst enhanced the formation of acetic acid, inhibited the formation of acrolein, and promoted gasification of the glycerol decomposition products. Hydrogen and carbon oxides were the main gases produced in the catalytic experiments, with minor amounts of methane and ethylene. Complete glycerol conversion was achieved at a residence time of 8.5 s at 510 °C, and at around 5 s at 550 °C with the 1 wt% Ru/ZrO2 catalyst. The catalyst was not active enough to achieve complete gasification since high yields of primary products like acetic acid and acetaldehyde were still present. Carbon balances were between 80 and 60% in the catalytic experiments, decreasing continuously as the residence time was increased. This was attributed partially to the formation of methanol and acetaldehyde, which were not recovered and analyzed efficiently in our set-up, but also to the formation of carbon deposits. Carbon deposition was not observed on the catalyst particles but on the surface of the inert zirconia particles, especially at high residence time. This was related to the higher concentration of acetic acid and other acidic species in the catalytic experiments, which may polymerize to form tar-like carbon precursors. Because of carbon deposition, hydrogen yields were significantly lower than expected; for instance at 550 °C the hydrogen yield potential was only 50% of the stoichiometric value.