937 resultados para Cancer stem cell


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of adipose-derived mesenchymal stem cells (ADMSC) transplantation on degeneration, regeneration and skeletal muscle function were investigated in dystrophin-deficient mice (24-week-old). ADMSC transplantation improved muscle strength and, resistance to fatigue. An increase in fiber cross-sectional area and in the number of fibers with centralized nuclei and augment of myogenin content were observed. In ADMSC-treated muscles a decrease in muscle content of TNF-alpha, IL-6 and oxidative stress measured by Amplex(A (R)) reagent were observed. The level of TGF-beta 1 was lowered whereas that of VEGF, IL-10 and IL-4 were increased by ADMSC treatment. An increase in markers of macrophage M1 (CD11 and F4-80) and a decrease in T lymphocyte marker (CD3) and arginase-1 were also observed in ADMSCs-treated dystrophic muscle. No change was observed in iNOS expression. Increased phosphorylation of Akt, p70S6k and 4E-BP1 was found in dystrophic muscles treated with ADMSC. These results suggest that ADMSC transplantation modulates inflammation and improves muscle tissue regeneration, ameliorating the dystrophic phenotype in dystrophin-deficient mice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lima S.A.F., Wodewotzky T.I., Lima-Neto J.F., Beltrao-Braga P.C.B. & Alvarenga F.C.L. 2012. [In vitro differentiation of mesenchimal stem cells of dogs into osteogenic precursors.] Diferenciacao in vitro de celulas-tronco mesenquimais da medula ossea de caes em precursores osteogenicos. Pesquisa Veterinaria Brasileira 32(5):463-469. Departamento de Reproducao Animal e Radiologia Veterinaria, Faculdade de Medicina Veterinaria e Zootecnia, Universidade Estadual Paulista, Campus de Botucatu, Distrito de Rubiao Junior s/n, Botucatu, SP 18618-970, Brazil. E-mail: silviavet@usp.br The aim of our research was to evaluate the potential for osteogenic differentiation of mesenchimal stem cells (MSC) obtained from dog bone marrow. The MSC were separated using the Ficoll method and cultured under two different conditions: DMEM low glucose or DMEM/F12, both containing L-glutamine, 20% of FBS and antibiotics. MSC markers were tested, confirming CD44+ and CD34- cells with flow cytometry. For osteogenic differentiation, cells were submitted to four different conditions: Group 1, same conditions used for primary cell culture with DMEM supplemented media; Group 2, same conditions of Group 1 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. Group 3, Cells cultured with supplemented DMEM/F12 media, and Group 4, same conditions as in Group 3 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. The cellular differentiation was confirmed using alizarin red and imunostaining with SP7/Osterix antibody. We observed by alizarin staining that calcium deposit was more evident in cells cultivated in DMEM/F12. Furthermore, by SP/7Osterix antibody immunostaining we obtained 1:6 positive cells when using DMEM/F12 compared with 1:12 for low-glucose DMEM. Based on our results, we conclude that the medium DMEM/F12 is more efficient for induction of differentiation of mesenchymal stem cells in canine osteogenic progenitors. This effect is probably due to the greater amount of glucose in the medium and the presence of various amino acids.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hematopoietic cell transplantation (HCT) is an emerging therapy for patients with severe autoimmune diseases (AID). We report data on 368 patients with AID who underwent HCT in 64 North and South American transplantation centers reported to the Center for International Blood and Marrow Transplant Research between 1996 and 2009. Most of the HCTs involved autologous grafts (n = 339); allogeneic HCT (n = 29) was done mostly in children. The most common indications for HCT were multiple sclerosis, systemic sclerosis, and systemic lupus erythematosus. The median age at transplantation was 38 years for autologous HCT and 25 years for allogeneic HCT. The corresponding times from diagnosis to HCT were 35 months and 24 months. Three-year overall survival after autologous HCT was 86% (95% confidence interval [CI], 81%-91%). Median follow-up of survivors was 31 months (range, 1-144 months). The most common causes of death were AID progression, infections, and organ failure. On multivariate analysis, the risk of death was higher in patients at centers that performed fewer than 5 autologous HCTs (relative risk, 3.5; 95% CI, 1.1-11.1; P = .03) and those that performed 5 to 15 autologous HCTs for AID during the study period (relative risk, 4.2; 95% CI, 1.5-11.7; P = .006) compared with patients at centers that performed more than 15 autologous HCTs for AID during the study period. AID is an emerging indication for HCT in the region. Collaboration of hematologists and other disease specialists with an outcomes database is important to promote optimal patient selection, analysis of the impact of prognostic variables and long-term outcomes, and development of clinical trials. Biol Blood Marrow Transplant 18: 1471-1478 (2012) (C) 2012 Published by Elsevier Inc. on behalf of American Society for Blood and Marrow Transplantation

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We previously reported the development of a lethal myeloid sarcoma in a non-human primate model utilizing retroviral vectors to genetically modify hematopoietic stem and progenitor cells. This leukemia was characterized by insertion of the vector provirus into the BCL2A1 gene, with resultant BCL2A1 over-expression. There is little information on the role of this anti-apoptotic member of the BCL2 family in hematopoiesis or leukemia induction. Therefore we studied the impact of Bcl2a1a lentiviral over-expression on murine hematopoietic stem and progenitor cells. We demonstrated the anti-apoptotic function of this protein in hematopoietic cells, but did not detect any impact of Bcl2a1a on in vitro cell growth or cell cycle kinetics. In vivo, we showed a higher propensity of HSCs over-expressing Bcl2a1a to engraft and contribute to hematopoiesis. Mice over-expressing Bcl2a1a in the hematologic compartment eventually developed an aggressive malignant disease characterized as a leukemia/lymphoma of B-cell origin. Secondary transplants carried out to investigate the primitive origin of the disease revealed the leukemia was transplantable. Thus, Bcl2a1 should be considered as a protooncogene with a potential role in both lymphoid and myeloid leukemogenesis, and a concerning site for insertional activation by integrating retroviral vectors utilized in hematopoietic stem cell gene therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fetal tissues are frequently discarded before (amniocentesis) or after birth, which both facilitates stem cell access and helps to overcome ethical concerns. In the present study, we aimed to isolate and characterize stem cells from the allantoic and amniotic fluids (ALF; AMF) of third trimester canine fetuses. This gestation age has not been previously explored for stem cells isolation. The gestational age, cell culture conditions and method of isolation used in this study allowed for the establishment and efficient expansion of ALF and AMF cells. We showed that the majority of ALF and ALF cells express the stem cell markers, such as vimentin, nestin and cytokeratin 18 (CK18). Under appropriate culture conditions AMF derived cells can undergo differentiation into osteogenic, adipogenic, chondrogenic and neuron-like lineages. ALF derived cells showed adipogenic, and chondrogenic potential. Therefore, ALF and AMF cells derived at the third gestation trimester can be qualified as progenitor stem cells, accordingly referred as (alantoic fluid progenitor/stem) ALF PS cells and (amniotic fluid progenitor/stem) AMF PS cells. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The skin is a complex stratified organ which acts not only as a permeability barrier and defense against external agents, but also has essential thermoregulatory, sensory and metabolic functions. Due to its high versatility and activity, the skin undergoes continuous self-renewal to repair damaged tissue and replace old cells. Consequently, the skin is a reservoir for adult stem cells of different embryonic origins. Skin stem cell populations reside in the adult hair follicle, sebaceous gland, dermis and epidermis. However, the origin of most of the stem cell populations found in the adult epidermis is still unknown. Far more unknown is the embryonic origin of other stem cells that populate the other layers of this tissue. In this review we attempt to clarify the emergence, structure, markers and embryonic development of diverse populations of stem cells from the epidermis, dermis and related appendages such as the sebaceous gland and hair follicle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Isolation of mesenchymal stem cells (MSCs) from umbilical cord blood (UCB) from full-term deliveries is a laborious, time-consuming process that results in a low yield of cells. In this study we identified parameters that can be helpful for a successful isolation of UCB-MSCs. According to our findings, chances for a well succeeded isolation of these cells are higher when MSCs were isolated from UCB collected from normal full-term pregnancies that did not last over 37 weeks. Besides the duration of pregnancy, blood volume and storage period of the UCB should also be considered for a successful isolation of these cells. Here, we found that the ideal blood volume collected should be above 80 mL and the period of storage should not exceed 6 h. We characterized UCB-MSCs by morphologic, immunophenotypic, protein/gene expression and by adipogenic differentiation potential. Isolated UCB-MSCs showed fibroblast-like morphology and the capacity of differentiating into adipocyte-like cells. Looking for markers of the undifferentiated status of UCB-MSCs, we analyzed the UCB-MSCs' protein expression profile along different time periods of the differentiation process into adipocyte-like cells. Our results showed that there is a decrease in the expression of the markers CD73, CD90, and CD105 that correlates to the degree of differentiation of UCB-MSCs We suggest that CD90 can be used as a mark to follow the differentiation commitment degree of MSCs. Microarray results showed an up-regulation of genes related to the adipogenesis process and to redox metabolism in the adipocyte-like differentiated MSCs. Our study provides information on a group of parameters that may help with successful isolation and consequently with characterization of the differentiated/undifferentiated status of UCB-MSCs, which will be useful to monitor the differentiation commitment of UCB-MSC and further facilitate the application of those cells in stem-cell therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We evaluated the effect of acute and chronic GVHD on relapse and survival after allogeneic hematopoietic SCT (HSCT) for multiple myeloma using non-myeloablative conditioning (NMA) and reduced-intensity conditioning (RIC). The outcomes of 177 HLA-identical sibling HSCT recipients between 1997 and 2005, following NMA (n = 98) or RIC (n = 79) were analyzed. In 105 patients, autografting was followed by planned NMA/RIC allogeneic transplantation. The impact of GVHD was assessed as a time-dependent covariate using Cox models. The incidence of acute GVHD (aGVHD; grades I-IV) was 42% (95% confidence interval (CI), 35-49%) and of chronic GVHD (cGVHD) at 5 years was 59% (95% CI, 49-69%), with 70% developing extensive cGVHD. In multivariate analysis, aGVHD (>= grade I) was associated with an increased risk of TRM (relative risk (RR) = 2.42, P = 0.016), whereas limited cGVHD significantly decreased the risk of myeloma relapse (RR = 0.35, P = 0.035) and was associated with superior EFS (RR = 0.40, P = 0.027). aGVHD had a detrimental effect on survival, especially in those receiving autologous followed by allogeneic HSCT (RR = 3.52, P = 0.001). The reduction in relapse risk associated with cGVHD is consistent with a beneficial graft-vs-myeloma effect, but this did not translate into a survival advantage. Bone Marrow Transplantation (2012) 47, 831-837; doi:10.1038/bmt.2011.192; published online 26 September 2011

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Background: Cardiovascular diseases are the major cause of death in the world. Current treatments have not been able to reverse this scenario, creating the need for the development of new therapies. Cell therapies have emerged as an alternative for cardiac diseases of distinct causes in experimental animal studies and more recently in clinical trials. Method/Design: We have designed clinical trials to test for the efficacy of autologous bone marrow derived mononuclear cell therapies in four different cardiopathies: acute and chronic ischemic heart disease, and Chagasic and dilated cardiomyopathy. All trials are multicenter, randomized, double-blind and placebo controlled. In each trial 300 patients will be enrolled and receive optimized therapy for their specific condition. Additionally, half of the patients will receive the autologous bone marrow cells while the other half will receive placebo (saline with 5% autologous serum). For each trial there are specific inclusion and exclusion criteria and the method for cell delivery is intramyocardial for the chronic ischemic heart disease and intracoronary for all others. Primary endpoint for all studies will be the difference in ejection fraction (determined by Simpson's rule) six and twelve months after intervention in relation to the basal ejection fraction. The main hypothesis of this study is that the patients who receive the autologous bone-marrow stem cell implant will have after a 6 month follow-up a mean increase of 5% in absolute left ventricular ejection fraction in comparison with the control group. Discussion: Many phase I clinical trials using cell therapy for cardiac diseases have already been performed. The few randomized studies have yielded conflicting results, rendering necessary larger well controlled trials to test for efficacy of cell therapies in cardiopathies. The trials registration numbers at the NIH registry are the following: Chagasic cardiomyopathy (NCT00349271), dilated cardiomyopathy (NCT00333827), acute myocardial infarction (NCT00350766) and Chronic Ischemic Heart Disease (NCT00362388).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10(4) cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CDKN2A encodes proteins such as p16 (INK4a), which negatively regulate the cell-cycle. Molecular genetic studies have revealed that deletions in CDKN2A occur frequently in cancer. Although p16 (INK4a) may be involved in tumor progression, the clinical impact and prognostic implications in head and neck squamous cell carcinoma (HNSCC) are controversial. The objective of this study was to evaluate the frequency of the immunohistochemical expression of p16 (INK4a) in 40 oropharynx and 35 larynx from HNSCC patients treated in a single institution and followed-up at least for 10 years in order to explore potential associations with clinicopathological outcomes and prognostic implications. Forty cases (53.3%) were positive for p16 (INK4a) and this expression was more intense in non-smoking patients (P = 0.050), whose tumors showed negative vascular embolization (P = 0.018), negative lymphatic permeation (P = 0.002), and clear surgical margins (P = 0.050). Importantly, on the basis of negative p16 (INK4a) expression, it was possible to predict a probability of lower survival (P = 0.055) as well as tumors presenting lymph node metastasis (P = 0.050) and capsular rupture (P = 0.0010). Furthermore, increased risk of recurrence was observed in tumors presenting capsular rupture (P = 0.0083). Taken together, the alteration in p16 (INK4a) appears to be a common event in patients with oropharynx and larynx squamous cell carcinoma and the negative expression of this protein correlated with poor prognosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The importance of mechanical aspects related to cell activity and its environment is becoming more evident due to their influence in stem cell differentiation and in the development of diseases such as atherosclerosis. The mechanical tension homeostasis is related to normal tissue behavior and its lack may be related to the formation of cancer, which shows a higher mechanical tension. Due to the complexity of cellular activity, the application of simplified models may elucidate which factors are really essential and which have a marginal effect. The development of a systematic method to reconstruct the elements involved in the perception of mechanical aspects by the cell may accelerate substantially the validation of these models. This work proposes the development of a routine capable of reconstructing the topology of focal adhesions and the actomyosin portion of the cytoskeleton from the displacement field generated by the cell on a flexible substrate. Another way to think of this problem is to develop an algorithm to reconstruct the forces applied by the cell from the measurements of the substrate displacement, which would be characterized as an inverse problem. For these kind of problems, the Topology Optimization Method (TOM) is suitable to find a solution. TOM is consisted of an iterative application of an optimization method and an analysis method to obtain an optimal distribution of material in a fixed domain. One way to experimentally obtain the substrate displacement is through Traction Force Microscopy (TFM), which also provides the forces applied by the cell. Along with systematically generating the distributions of focal adhesion and actin-myosin for the validation of simplified models, the algorithm also represents a complementary and more phenomenological approach to TFM. As a first approximation, actin fibers and flexible substrate are represented through two-dimensional linear Finite Element Method. Actin contraction is modeled as an initial stress of the FEM elements. Focal adhesions connecting actin and substrate are represented by springs. The algorithm was applied to data obtained from experiments regarding cytoskeletal prestress and micropatterning, comparing the numerical results to the experimental ones

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background/objectives: Therapy using bone marrow (BM) cells has been tested experimentally and clinically due to the potential ability to restore cardiac function by regenerating lost myocytes or increasing the survival of tissues at risk after myocardial infarction (MI). In this study we aimed to evaluate whether BM-derived mononuclear cell (MNC) implantation can positively influence the post-MI structural remodeling, contractility and Ca(2 +)-handling proteins of the remote non-infarcted tissue in rats. Methods and results: After 48 h of MI induction, saline or BM-MNC were injected. Six weeks later, MI scars were slightly smaller and thicker, and cardiac dilatation was just partially prevented by cell therapy. However, the cardiac performance under hemodynamic stress was totally preserved in the BM-MNC treated group if compared to the untreated group, associated with normal contractility of remote myocardium as analyzed in vitro. The impaired post-rest potentiation of contractile force, associated with decreased protein expression of the sarcoplasmic reticulum Ca2 +-ATPase and phosphorylated-phospholamban and overexpression of Na(+)/Ca(2 +) exchanger, were prevented by BM-MNC, indicating preservation of the Ca(2 +) handling. Finally, pathological changes on remodeled remote tissue such as myocyte hypertrophy, interstitial fibrosis and capillary rarefaction were also mitigated by cell therapy. Conclusions: BM-MNC therapy was able to prevent cardiac structural and molecular remodeling after MI, avoiding pathological changes on Ca(2 +)-handling proteins and preserving contractile behavior of the viable myocardium, which could be the major contributor to the improvements of global cardiac performance after cell transplantation despite that scar tissue still exists.